Kalibra Library

Our latest thinking on intentional health

Your gallbladder and why it's important

Yesterday I had a video coaching session with one of my patrons, and the last thing we talked about was the gall bladder. They recently had an ultrasound done to check out the insides of the abdomen---obviously to make sure everything looks good. The kidneys looked good, the liver had a small benign lump of 1--2 mm  in size (angioma sounds so much more serious), and the gall bladder had a bunch of little stones. I asked what the doctor recommended.

"There's nothing to worry about. Let's check again in half a year." That was it. Nothing more. So, they asked me if there was anything that could be done to help in some way.

What do you think? Is there not always something that can be done to help---to help the body cleanse itself, repair itself, heal itself, improve its physiological and metabolic functions?

We'll take the time to study and explore the liver and its functions in greater detail later---the liver is a lot more complex. The gall bladder is quite simple, and so, I just wanted to share with you what I explained yesterday, and at the same time, take the opportunity to expand a little on that.

First the Anatomy

Looking at the abdomen from the bottom of the sternum (the bone between the pectorals) to below the hips, after having removed the skin and layers of muscle, cut out the front part of the ribs, and changed the appearance to make it cartoon-like, without any blood, veins, arteries, or nerves, and thus not so shocking to look at, we would see something like this:[caption id="attachment_12880" align="aligncenter" width="1886"]

abdomen-front-labels

Digestive system: front view with labels[/caption]The large, dark red organ that is the liver sits at the very top of the abdomen with its largest lobe located on the right side of the body. On the left, below the liver's smaller left lobe, is the stomach that curves back towards the middle where it connects to the small intestine (duodenum). The gallbladder---the small dark green pouch---is nestled between the bottom of the liver's right lobe and the first part of the duodenum. Below the stomach, sweeping across the abdomen from one side of the body to the other is the transverse part of the large intestine (colon). The entire lower portion of the abdomen is filled with the longest segment of the intestines.If we zoom in on the upper abdomen.

upper-abdomen-front-nolabels

Upper digestive system: close up front view[/caption]and then hide the liver

upper-abdomen-front-noLiver-nolabels

Upper digestive system: close up front view without liver to show bile ducts[/caption]we see all of the little green ducts embedded into the liver whose function it is carry the bile from the different parts of the organ to the main bile duct and gallbladder. Taking a look at the same part of the abdomen from the back

upper-abdomen-back-top-labels

Upper digestive system: close up back view with labels[/caption]we see how the gallbladder sits between the liver and duodenum, and how the main bile duct sweeps down behind the pancreas to connect to the main pancreatic duct such that the bile from the liver and gallbladder can be injected into the small intestine together with the enzymes, insulin, glucagon, and bicarbonate from the pancreas. We also see from this side the dark red, bean shaped, right and left kidneys, and the yellow adrenal glands sitting on top of them.

And then the physiology

Why do we need bile and what does it do? Why is there a gallbladder? And what is bile anyway?Bile is 97% water, 0.7% bile salts (sodium and potassium), 0.5% cholesterol, fatty acids, and lecithin, 0.2% bilirubin, and a tiny bit of inorganic salts. In human adults the liver produces 400--800 ml of bile per day (Wikipedia). The liver produces bile continuously but slowly. When we eat, depending on how much fat there is in the meal, the digestive system may need quite a bit of bile to handle the fat that was just ingested. Hence the need for storage and thus the function of the gallbladder.

The purpose of bile is to emulsify fat. Emulsifying means making into tiny droplets that can mix into another liquid to form a smooth homogeneous solution. For example, a bit of mustard works very well to emulsify the oil and vinegar that would otherwise not mix into a smooth creamy vinaigrette. After emulsification, fat droplets are typically 15--30 microns in size. We need bile to emulsify the fats that we eat so that the pancreatic enzyme lipase can then break these triglycerides down into monoglycerides and free fatty acids. This is done in the small intestine where the bile and enzymes are secreted from the pancreas with the bicarbonate solution. This in turn allows the fat to be transported through the intestinal wall before being reassembled into triglycerides and absorbed into the lymphatic system.

Without bile, fat could not be absorbed. It would go straight through the gut and be excreted undigested.Why would stones form in the gallbladder? Is there a way to prevent the formation of gallstones? And what actually are these gallstones?Gallstones are basically little hard lumps of cholesterol. One of the functions of the gallbladder is to concentrate the bile which comes in quite diluted, as we saw earlier, being 97% water. But when the concentration grows too high, then cholesterol precipitates out and forms little lumps. These are what we call gallstones.

Given that we know that stones form out of precipitated cholesterol when the concentration of the bile is too high in the gallbladder, it is simply logical that if the concentration can be kept low enough, below the threshold at which cholesterol will precipitate, then no stones would form. But why does the concentration of bile grow to the point of precipitation?Let's ask another question: what happens if we don't eat much fat? The liver produces bile continuously, between 400 and 800 ml per day. This bile is stored into the gallbladder until it is needed after a meal in which fat was ingested. If we don't eat much fat in a meal, then, naturally, not much bile will be needed, and most of the available bile will therefore remain in the gallbladder. Because the liver continues to produce it, the gallbladder needs to make room for it, and thus concentrate its contents further.So, what happens if we never eat very much fat, and if actually, every meal is a relatively low fat meal? Well, what happens in a pool of water if the water does not flow out, and is by this not renewed by fresh water?

Stagnation. In the case of the pool of water, we all know what happens: it grows dirty, then thick, then greenish, then totally filled with lumpy green gelatinous stuff. In the case of the gallbladder, we can imagine that something analogous takes place, and that the lumps of cholesterol are like the lumps of green gelatinous stuff in the water.The solution is simple: eat plenty of fat on a regular basis. This way, the gallbladder can empty itself out regularly, and the bile does not stagnate, grow more concentrated, and eventually lumpy with gallstones.

Your gallbladder and why it's important

Here's what we learned:The gallbladder sits between the right lobe of the liver and the first part of the small intestine. It stores and concentrates bile which is mostly water with small amounts of salts, bilirubin, lecithin, and cholesterol. The liver produces bile continuously in the amount of 400 to 800 ml per day.The function of bile is to emulsify the fat we eat to make it absorbable. Without bile, fat just go through and gets excreted undigested. The same is therefore true for all fat-soluble minerals and vitamins, including some of the most important of them all, the crucial vitamins A, D, E, and K2.If we don't eat fat, there's no need for bile. If we don't eat much fat for a long time, the bile will get more and more concentrated. Eventually, the concentration will be high enough for cholesterol to precipitate out of the bile and form little lumps. These lumps of cholesterol are called gallstones.Imagine that this continues for years and even decades, following a good "heart-healthy" low-fat diet. What do you think will eventually happen based on what we've just discussed? More stagnation, more highly concentrated bile, more gallstones, and then at one point, this whole thing explodes into acute infection, acute inflammation, excruciating pain, and emergency surgery to remove the infected gallbladder.And then what? I'll you finish this exercise in deductive reasoning which you now have all the necessary background to complete.Thank you to all our patrons, and in particular Eric Peters and Toni, for their continued support. Become a proud sponsor of healthfully and join our patrons today!

Read More

Stop the bleeding and heal the tissues

This is a healing programme for someone who has had chronic haemorrhoids and bleeding for a long time. Following an operation that was supposed to resolve the problem, the situation worsened, the bleeding increased, and consequently, they now have haematologic issues. The situation could quickly become critical.Good morning,In all likelihood, the cause of all the blood-related problems is the colon dysfunction, hemorrhoids, and most importantly the bleeding from the anus. This needs to be corrected before things get much worse. The basic strategy is to minimise bowel movements until the colon and anus have healed, and maximise the speed of healing and nutrient density specific to blood building.

Eat no fibres

To allow the colon and anus to heal, we need to stop stressing their tissues, which means less bowel movements. This will be done by eating only animal foods and zero plant fibres. In your case, this means animal flesh, fat, and organ meat only (no eggs or dairy products). No matter what anybody you may talk to thinks about it, this is a perfectly healthy way to eat that eliminates all low density nutrient food sources, and is in fact used very successfully to treat and heal serious autoimmune conditions that do not respond to other kinds of treatments.

It provides an extremely nutritious diet because all animal foods are concentrated sources of proteins and protein-bound nutrients, fats and fat-soluble nutrients, that are all easy to absorb and digest because the gut is free of intervening fibres that slow down or prevent absorption, and contain none of the natural toxins found in all plants to a greater or lesser extent. You can read many testimonials, some truly amazing, on Zero Carb Zen. It is important to keep in mind that while protein is used for tissue building and repair, it is fat that is used for cellular energy production. Hence, you need to have plenty of fat and salt with your meals. You should have always have liberal amounts of the highest quality grass fed butter, extra virgin organic coconut oil, extra virgin olive oil, and unrefined sea salt.

Build blood with liver and chlorophyll

There is nothing more effective at building blood than liver from the animal food world and chlorophyll from the plant food world. So, you will have both. Liver should be grass fed veal liver, as it is one of the most nutritious. But other animal livers including chicken are also good. It is very interesting to note that chlorophyll is really like plant blood because it has the same structure as haemoglobin with the only difference being that its central component is Mg instead of Fe for haemoglobin.I think that in order to accelerate healing, you should have liver every day, but in small amounts, like 50 g.

The chlorophyll you will have with water. You can either have it more concentrated (in a single glass of water) and have it 2-3 times per day, or you can have it more diluted and have it over longer periods. The taste might be any issue, so you can see what works best for you. Also, you need to be cautious to not take too much as this will cause loose stools. You need to increase your intake gradually. Naturally, all zero-to-very-low sugar green juices are also excellent to have as much as you want. You should always add a little olive oil to your green juices to increase absorption of nutrients. Supplements: Chlorophyll

Accelerate healing with amino acids and proteolytic enzymes

To maximize the speed of healing you will take amino acids that, as a supplement, are almost 100% absorbed without any inefficiencies related to compromised digestion. The first place they will be used it for tissue repair. Proteolytic enzyme are the specialised proteins that actually perform the breakdown of damaged tissue, as well as the repair and rebuilding of tissues throughout the body. They should both always be taken on an empty stomach and at least one hour before eating anything. They can be taken several times a day, so I suggest 3-4 times, taking 3-5 amino acid tablets and 3 proteolytic enzyme capsules each time, first thing in the morning, one hour before the midday meal, one hour before the evening meal, and before bed. Vitamin A is also essential for tissue repair, but liver is one of the richest sources of it, so you don't need to take extra. Supplements: Amino acids and proteolytic enzymes

Moisturise skin with oil

The last thing is to help the tissue of the anus from the outside by putting some olive oil with a small amount of essential oils of lavender and geranium. The proportion is 3 drops of each essential oil for 30 ml of oil. Dip your finger only once in the small oil container, and moisturise the skin around the anus. Do this a few times per day, and always before and after a bowel movement. Following these recommendations, you should see improvements very soon, but as is always the case, healing time is proportional to the time over which disease and damage has persisted. So, be consistent and patient.

Read More

Is it possible to make universal recommendations about health?

Focus these days tends to be on individuality. Especially in this age of genetic testing.

The fact is, however, that ahead of individual differences, we are all human. Not only that, but as far as we know today, with the latest studies of mitochondrial gene evolution and transmission, we are all descendants of the same group of homo sapiens from the south western coast of Africa.

Hence the question: can we make universal recommendations?Imagine we could examine every human being on the planet, and assess organ function. For example, examine function of the kidneys, liver, pancreas, gall bladder, stomach, small intestine, and large intestine. Would we find differences in how these are working from one person to another? Of course we would! That's obvious. But does that have to do with inherent individual differences, or does it have to do with acquired differences that have developed over time for a range of different reasons?

What if we were to ask this question instead: is there a difference, from one person to another, in how these organs are meant to work, a difference in how these organs should be working?If that were the question, we would most certainly agree, together with probably all anatomists and physiologists, that all of these organs, and the rest of the internal organs of our organism, are meant to work in the same way. That all these organs, no matter in which person they happen to be, and no matter how they are currently working, are nevertheless meant to work in precisely the same way to perform precisely the same functions. And this not only in humans, but also in most animals with whom we share these fundamental anatomical and physiological characteristics.

This naturally points not to individual differences but toinherent similarities as the fundamentally essential.It is however quite easy to understand why there is so much emphasis on individuality. Aren't we all unique and different? Aren't we all so special in this uniqueness? Don't we all have to learn to listen to our inner voice and pursue what we need to feel fulfilled in our own unique way? And how cool it is to be able to know our genetic profile, our own, completely unique, personal, and individual genetic profile? How special does it make us feel to know that there isn't a single other person that has the same genetic profile as us?

What if everyone was brought to believe that each type of cancer is different, not superficially but fundamentally, and that in addition, each type is expressed differently in each individual because of the different interactions with their unique genetic makeup? That it is necessary to treat each individual cancer and each individual person with a drug that is genetically tailored just for them in their particular situation? What if we were brought to believe that this was the case for most illnesses and chronic diseases: that what is needed are specific drugs for specific conditions that are genetically tailored to each person? What endless possibilities! What awesome growth potential! What amazing investment opportunities! And what astronomical potential for returns on investments!

Contrast this with a position holding that cancer is a metabolic disease, and that no matter what kind it is, fundamentally cancer is always caused by a mitochondrial dysfunction that leads to excessive fermentation of glucose for fuelling accelerated reproduction and a cellular activity that has become undifferentiated, and that therefore, all cancers can be prevented and even reversed by effectively starving the cancer cells of fuel by maintaining very low glucose and very low insulin levels in the bloodstream to ensure that healthy cells derive their energy from fatty acids and ketones, while the weakened and dysfunctional cancer cells starve and die.

What growth potential? What investment opportunities? What returns on investments? Contrast this with a position holding that all chronic diseases are also rooted in metabolic dysfunctions, and arise, simply and naturally, in a rather predictable manner, from things like chronic dehydration, chronic dysfunctions in digestion, absorption, and elimination, chronic nutritional deficiencies, biochemical imbalances, accumulation of metabolic acids and wastes, and result from all the consequences brought on by these dysfunctions and imbalances over years and decades that grow in severity in time until we are really quite sick, but all of them very simply prevented and treated with proper self care, hydration, and nutrition.

Again we can ask, what growth potential, what investment opportunities, what returns on investments?Whatever your personal inclination about any of this, it's definitely something to keep in mind when evaluating statements concerning the general applicability versus the individual tailoring of treatments for ailments and approaches to health.

My position is simple:

  • as living organisms and complex animals, all humans are basically the same in anatomy and physiology;
  • there are obvious differences from one person to another that must be taken into account when considering each person individually; but
  • on the whole similarities are many and fundamental, while differences are fewer and generally superficial.

This is not to say that differences can be dismissed or even overlooked. Of course not. There are important differences in the expression of fundamental genes like the MTHRF gene that regulates methylation in the body, and which hence directly affects the body's biochemistry and state of health. Similarly, there are important differences in response to sunlight and vitamin D metabolism from one person to another, even people from the same general gene pool.

But these are nevertheless superficial compared to the totally fundamental considerations of how cells, organs, systems, and hormones work. With all of this in mind, let's come to the main point:what recommendations I would make with confidence to any adult not suffering from a major disorder, younger or older, weaker or stronger, more fragile or more robust, knowing that these recommendations would in no way be harmful, and would instead be helpful to improve health. They are presented in order of importance.

  1. Drink plenty of water and eat plenty of unrefined salt with meals. This is essential for proper hydration on which every cell relies, and proper kidney function on which the organism as a whole relies.
  2. Get at least 8 hours of quality sleep per night, on a regular schedule, somewhere between 21:00 and 8:00 the next day. Nothing is more important for health than sleep, and there is no way in which we can make up for a lack of it.
  3. Practice intermittent fasting. Nothing offers a more effective way to cleanse, repair, heal, and optimise cells, tissues, organs and metabolic function than fasting.
  4. Eat only nutrient dense whole foods. Ideally organic and pasture raised, focusing on high quality animal protein and fats, and micronutrient dense plant foods, avoiding all processed carbohydrates, lectins from grains and nightshades, and any foods to which you may be intolerant (e.g., dairy, eggs, nuts, etc).
  5. Take vitamins A, D3, and K2. These are fundamentally important fat-soluble vitamins, essential for healthy gene expression, calcium metabolism, healthy bones and teeth, and healthy arteries and soft tissues throughout the body.
  6. Take baking soda. Start the day with half to three quarters of a teaspoon of baking soda dissolved in a large glass of water on a completely empty stomach. This is the easiest way to supply the most important alkaline compound used by the body, and offset the acid load and potential accumulation in tissues of metabolic acids.
  7. Take iodine. This is essential for healthy thyroid, mammary, and glandular function in general. But iodine is needed in every cell, and basically everyone is iodine deficient. Unless you live by the sea and eat fish and seafood regularly, you need extra iodine (either in pills or by eating sea vegetables).
  8. Take magnesium. This mineral is also needed by all cells, but especially muscle cells that need and use up magnesium in order to relax, and our soils are globally deficient in it. Thus, naturally, so are we. Contraction of muscle requires calcium, which is quite abundant in our diet; relaxation requires magnesium, which is, on the contrary, rather scare in our food supply.
  9. Practice resistance training. Focus on large compound exercises like the deadlift, squat, benchpress, and standing overhead press. There is no way more effective to maintain a strong and healthy balanced musculature, nervous system, skeletal structure, and hormonal system than whole body exertion through complex lifts with sufficient resistance.
  10. Find purpose and fulfilment in your life. This is fundamental. Without a sense of purpose we feel useless, unneeded, unwanted. Without a sense of fulfilment from what we do, we feel hollow, empty, worthless. It is therefore essential to find and to actively seek to maintain a strong sense of purpose, and a feeling of fulfilment in life. Do not take this lightly. Look into it and find it.

Here you have it: ten simple recommendations for a healthy life. And, from the perspective presented here, ten universal recommendations for any adult without a major disorder requiring specific considerations, which are sure to not cause harm, and instead sure to bring about improvements and benefits to metabolic, hormonal, muscular, skeletal, and physiological functions of the organism as a whole. Therefore, in conclusion, I would say that yes, it is possible to make universal recommendations about health.

Read More

Where our thinking is different

There are a few things that we do differently here at Kalibra. First and foremost, we recognise that we have a lot in common in how our body works, and that is, in fact possible to make universal recommendations about health. However, we also recognise that our genetics, environment, personal tendencies, and preferences can make a big difference.

In practice, to be most effective in improving our health, we can focus, each time we make a decision, on the best next action. Our goal is to help you find what that best next action is, motivate you to act on it, and guide you to habituate it.

We have organised our thinking in a coherent holistic quantitative framework {Link to 6 needs blog} that is used as a compass to navigate the intricacies and subtleties of the science underlying our vision of optimal health. In this article we want to give you a taste of what we mean and where our thinking is different from the mainstream. We will look at three topics:

  • Insulin and aging
  • Cholesterol is good for you
  • You’re probably not eating enough (good) salt.

Focus on insulin as an aging agent  

If you’ve read the blog posts related to carbohydrates, insulin, and diabetes by our co-founder, Guillaume, (see for example We were never meant to eat simple or starchy carbohydrates, and Reversing diabetes: understanding the process), you’ll be surprised to find that this time, we are not talking about insulin as the master metabolic hormone that regulates the storage into cells of nutrients circulating in the bloodstream. Instead, what we’re focusing on today is one of the 20th century’s greatest discoveries, namely the role of insulin as the primary regulator of the rate of ageing.

Ageing is not inevitable

Conventional wisdom suggests that aging is inevitable. Well, we disagree. We, and many others, prefer to think that aging is a disease, and humanity is making progress in fighting it. But in the here and now, our best defence against aging are our daily habits and nutrition. Specifically, it involves a long genetic chain of events (link below) which centers on insulin and insulin-like growth factor 1 (IGF-1).  

Insulin and IGF-1 promote growth, which is vital because nutrient absorption and cellular growth and reproduction are essential for life across all living organisms. Growth in immature individuals is fundamental for health and ensuring they reach maturity; but growth in adults, in mature individuals, just means ageing, and the more insulin and IGF-1 there is, the faster the rate of cellular damage and deterioration, the more genetic mutations from errors in transcription, the more pronounced the deterioration in tissues, and obviously, the faster the rate of ageing.

This leads us to carbs

The truth is that any additional stimulation of insulin, promoted by eating simple and starchy carbs, actually deregulates the proper balance of hormones that the body is trying to maintain. This deregulation from a sugar-heavy diet in children explains the widespread health problems in our youth, most important of which is childhood obesity and the metabolic and physiological stresses this brings on.

Ultimately, mother nature knows how to best regulate the concentration of insulin in the bloodstream. What we can do to help our biochemical balance is by not ingesting refined carbohydrates: it’s the last thing anyone needs for good health and long life.

Very simply put, the easiest but also the only natural way to slow down the rate of ageing is to eliminate insulin-stimulating carbohydrates—sugars and starches—from the diet. For most people, this will, within 16-20 hours, allow insulin levels to drop to a functional minimum. The low blood sugar level will allow the pancreas to reduce production, and thus insulin levels to drop little by little.

Lowered insulin will then eventually allow the cells to start using the fat circulating in the blood, and in time, increase in efficiency, thereby dropping triglyceride levels lower and lower. And this is the path to healthy tissues and organs, and slowing down aging.

You can find more about this subject and Professor Cynthia Kenyon’s work on the effect of insulin on the DAF-2 Gene here: Living healthy to 160 – insulin and the genetics of longevity

Cholesterol: it’s a good thing

Cholesterol doesn’t have an easy ride. Its varieties are called “good” and “bad” and it’s universally accepted that high total cholesterol, and/or bad cholesterol is terrible news, leading to cardiovascular disease.

Using scientific research, we argue that cholesterol is nothing less than vital for life, development, growth and reproduction. It is ultimately vital for life to emerge, and for life to sustain itself.

Why? Because every membrane of every single cell in your body relies on cholesterol to give it structural integrity. Because every single nerve cell in your brain and every synapse through which nerve impulses are transmitted are mostly made of cholesterol. Because every sex hormone of every woman and man is constructed from cholesterol. Basically, without cholesterol, animal life is impossible.

No such thing as ‘good’ or ‘bad’ cholesterol

Firstly, cholesterol comes in only one form: there is no such thing as good and bad cholesterol. It doesn’t make a difference if it is the cholesterol contained in the dark orange yolk of an organic egg, the cholesterol synthesised by your liver through a complicated chain of steps that we still do not completely understand, or is the cholesterol produced by the individual cells like the glial cells in the brain (or in any other tissue or organ other than the liver.)

It is very telling that, unlike almost any other molecule, cholesterol is maybe the only one that probably every cell in every tissue can produce.

Our point is simple, but very important: cholesterol is beyond good or bad—it is absolutely vital.

What are LDL and HDL?

What is usually referred to as ‘good’ or ‘bad’ cholesterol (the naming convention being a result of some ingenious marketing), are in fact molecules called lipoproteins. They are proteins that transport lipids in the bloodstream (hence lipo-protein), and in particular cholesterol, to and from tissues in different parts of the body.

Cholesterol is a waxy, fatty substance that is not soluble in water and therefore cannot flow in the bloodstream that is mostly water. For this reason it needs to be transported where it is needed by some other molecules: the lipoproteins. It is indeed most unfortunate that we hear about LDL as the ‘bad’, and HDL as the ‘good’ cholesterol. This is not only false, but completely absurd.

LDL stands for Low Density Lipoprotein, and HDL stands for High Density Lipoprotein. The reason why this erroneous association and misguided use of these terms came about is based on the fact that one of the functions of LDL molecules is to transport cholesterol from the liver, where most of it is manufactured, to cells and tissues that need it for repair and regeneration.

Since LDL helps to carry cholesterol out from the liver and into the bloodstream to tissues, in thinking that cholesterol in the blood should be minimised, then this is clearly a terrible thing. Hence LDL was dubbed the ‘bad’ cholesterol.

This makes no sense to us—cholesterol is necessary for the manufacture, maintenance and repair of the membrane of every single one of the 50 trillion cells in the body.

Naturally, for a molecule as important, as complex to synthesise, and therefore as precious as cholesterol, the organism has evolved a way to collect and reuse it. One of the roles of the HDL carrier molecules is to scavenge around for unneeded or surplus cholesterol and bring it back to the liver.

So we know that one of the roles of LDL and HDL molecules—certainly the most obvious one—is to transport cholesterol from the liver to cells and tissues, and back to it for reuse and recycling or breakdown into other molecules. LDL and HDL work together as essential partners in the cholesterol transport system.

HDL and LDL: beyond cholesterol transport - evidence speaks volumes

Compiling all the data we have from studies that measured lipoprotein levels in the blood and death rates, we find that the lowest mortality from all diseases occurs in people with total lipoprotein levels between 200 and 240, centred on 220 mg/dl. These are age-corrected data, so as we age levels should gradually rise. But that’s not the only thing we find from looking at this graph of compiled data: there is an inverse relationship between lipoprotein levels and mortality such that the lower the lipoprotein levels are, the higher the death rate! To those who know what HDL and LDL molecules do, this is not surprising at all. It is, in fact, perfectly sensible.

As much as some may believe that the main role of LDL and HDL molecules is to carry cholesterol to and from tissues for cellular maintenance and repair, some would argue that their main role is not simple transport of cholesterol, but in fact, it is to protect the organism from bacterial and viral pathogens. It is firmly established that lipoproteins bind to endotoxins to inactivate them and protect against their toxic effects, including arterial wall inflammation.

The essential point to remember, however, is that the lipoproteins LDL and HDL play a very important role in our immune system by neutralising harmful toxins released from the activity of pathogenic bacteria and viruses, thus protecting us from infectious diseases and the related chronic inflammation. This is why people with higher levels of lipoproteins LDL and HDL live longer and healthier lives.

Cholesterol and the brain

Although all cell membranes rely on cholesterol for structural integrity, neurons or brain cells are highly enriched in cholesterol, which makes up more than 20% of their dry weight. The importance of this enrichment can be appreciated when we consider that our brain accounts for about 2% of our body weight, but it contains about 25% of the cholesterol in the body. This means that the concentration of cholesterol in the brain is 12.5 times higher than the average bodily concentration. Isn’t this enough to convince you of the extreme importance of cholesterol for proper brain function?

As elsewhere in the body, cholesterol is found in the cell membrane—for brain cells this is the myelin sheaths that insulate them. But, in addition, cholesterol is the main constituent of the synapses through which nerve impulses are transmitted from one neuron to another. And contrary to common wisdom that lipoproteins cannot cross the blood-brain barrier, and therefore brain cholesterol must be synthesised in the brain, it has been shown that if something prevents brain cells from synthesising the precious cholesterol, then they use whatever they can get from the lipoproteins circulating in the blood.

With all of this in mind, is it surprising that when cholesterol synthesis is partially or completely de-activated using statin drugs, some of the most common symptoms seen are memory loss, dizziness, mental fog, slowing reflexes, etc., all of which are obviously related to brain function? Is it surprising that Alzheimer’s patients tend to have lower cholesterol levels both in the blood and in the brain? Well, no. It’s not surprising at all.

Cholesterol and hormones

What more needs to be said to emphasise the importance of cholesterol for healthy hormonal function than that all steroid hormones are made from it. Steroid hormones, as the name suggests, are steroids that act as hormones. Hormones are messenger molecules that tell cells what to do and when to do it. To carry out their function—to pass on their message—they must reach the nucleus of the cell. But to reach the well protected nucleus and bind to specific receptors in it, hormones must pass through the fatty cellular membrane. For this reason, hormones are made of fat: they are lipids. Since lipids are not water soluble, as is the case of cholesterol, hormones rely on specialised proteins to transport them in the bloodstream throughout the body.

Too much cholesterol? Get real

There is no such thing as too much cholesterol. The body produces exactly what it needs depending on the conditions, and as such, the amount in circulation is a consequence of other factors.

Lipoprotein levels, reflecting the amount of cholesterol in circulation, are a function of genetics and of the state of the body. Genetic tendencies are what they are. The state of the body, as far as cholesterol is concerned, means primarily the condition of the tissues. And the condition of the tissues reflects the amount of damage they sustain in relation to the amount of repair that takes place: in other words, the rate of ageing. Since cholesterol gives cell membranes strength and integrity, it is needed to repair and rebuild cells.

The more cellular reproduction, as in growing children, the more cholesterol is needed; the more damage to cells, the more cholesterol is needed. The damage sustained by tissues is mostly from glycation, free-radicals, and chronic inflammation, all of which are intimately related because blood sugar triggers both free-radical production and inflammatory processes, but much inflammation also arises from the action of toxins and infectious agents like viruses and bacteria.

Cholesterol and arterial plaque

It is true that the accumulation of plaque can lead to heart disease. It is also true that plaque is very cholesterol-rich. However, the reason why plaque is formed is due to the arterial tissue being damaged and needing to be repaired. The cholesterol-rich plaque is like a scab whose role is to allow the damaged tissue to heal. And just as a scab, once the tissue is healed, it ‘falls off’ and is brought back to the liver for recycling. And for that, the cholesterol is part of the healing agent.

The damage to the tissue comes from other things, whether it is inflammatory endotoxins released from pathogenic bacteria, cigarette smoking-related chemicals, or glucose sticking haphazardly to proteins, damaging the arterial walls and forming advanced glycation end-products. Cholesterol is the bandage meant to help the tissue heal—not the cause of the problem.

To sum up, our view is that cholesterol is not in the least harmful, and that it is, in fact, absolutely vital to your health: vital for your hormonal system, vital for your immune system, vital for your brain, and vital for every cell in your body.

On that basis, incriminating LDL as causing heart disease or any other ailment is wrong in our view. Furthermore, we believe that we should maintain optimal lipoprotein levels around 220-240 mg/dl, and supply the body with ample amounts of health-promoting fats, increasing our intake of unprocessed saturated fats like coconut oil, as well as fat-soluble vitamins and cholesterol from organic eggs from free range, grass-and-insect eating hens, butter and fatty cheeses (preferably made from unpasteurized milk to maximise digestibility), and grass-fed meats if you are not vegetarian or vegan.

Read more about cholesterol here: But what about cholesterol?

Eat plenty of salt

For most of our lives we’ve been told to avoid salt - a few years ago it was the main villain, for its role in high blood pressure, and was to be firmly avoided. Well, not so fast.

It turns out that just like cholesterol, salt is absolutely vital for proper hydration and the correct functioning of the most magical of organs, our kidneys. And, in fact, we’re pretty sure that you are probably not consuming enough good salt, especially if you’re avoiding processed fast food, which of course you should. So, let us explain.

Why salt is critical for our health, and why too much is better than not enough

Bear with us here—the science is important.

Salt, the one we put on food, is composed almost exclusively of sodium chloride (NaCl) that very easily dissolves in water into positively charged sodium (Na+) and negatively charged chloride (Cl-) ions. And there is something very special and unique about these ions: in our blood, Na+ and Cl- are present in the highest concentrations and maintained in the narrowest of ranges.

This is very revealing, because it means that sodium and chloride are the most important extracellular electrolytes.

Our blood is made of red blood cells (45%) and white blood cells and platelets (0.7%) floating in blood plasma (54.3%). Blood plasma shuttles nutrients to cells around the body and transports wastes out. It consists of 92% water, 8% specialised mostly transporter proteins, and trace amounts of solutes (things dissolved or floating in it). And although circulating in trace amounts, the solutes—especially sodium—are vital. The concentration of solutes in blood plasma is around 300 mmol/l (don’t worry about the units). In the highest concentration of all is sodium at 140 mmol/l. In the second highest concentration of all is chloride at 100 mmol/l. The sum of these is 240 mmol/l.

So, from these numbers alone, we see that blood plasma is more or less just salty water. Did you get that? Blood plasma is the key transport vehicle for our cells’ health, and it is more or less water AND salt.

Busting the hypertension myth

Hypertension is not caused by excessive salt consumption. It is caused primarily by chronic dehydration, magnesium deficiency, and calcification. It goes like this: every cell in every tissue and in every organ of our body relies on an electrical potential difference between the fluid inside the cell membrane and the fluid outside of it in order to function—produce energy and transport things in and out. This is particularly important in active “electrical” tissues such as muscles and nerves, including neurons. These tissues simply cannot work—cannot contract and relax in the case of muscle fibres, and cannot fire off electrical pulses in the case of nerve fibres and neurons—without a well-maintained and stable potential across the cellular membrane.

This resting potential across the membrane results from the delicate balance of the equilibrium potential and relative permeability through the cellular membrane of the three most important ions: Na+, K+ and Cl-. Of these, however, it is sodium that has the greatest effect on the kidneys. The kidneys’ primary function is to maintain blood pressure and concentration of electrolytes—each within its typically narrow range of optimal concentration—while excreting metabolic wastes.

The kidneys do this by efficiently reabsorbing most of the water and electrolytes from the large volume of blood that passes through them in every second throughout the day and night, getting rid of as much as possible of the metabolic wastes, and carefully adjusting the elimination of ‘excessive’ amounts of water and electrolytes. Deprive them of salt, and the system falls over. Excessive salt with enough water, however, can just be flushed out.

Therefore, salt is critical for proper kidney function, and thus also critical for regulating blood pressure correctly. So, the whole salt-causes-high-blood-pressure myth is a pretty serious misunderstanding of how things actually work.

Drinking water without salt actually dehydrates you

Remember that the kidneys try very hard to maintain the concentration of solutes in blood plasma—(known as plasma osmolarity). Also remember that sodium is by far the most important in regulating kidney function, and also in the highest concentration. It is nonetheless total osmolarity that the kidneys try to keep constant, and besides sodium, the other important molecule used to monitor and maintain osmolarity by the kidneys is urea—the primary metabolic waste they are trying to eliminate.

If we eat nothing and just drink plain water, beyond the body’s minimum water needs, every glass will dilute the blood further and, thus, cause the kidneys to try to retain more of the sodium while eliminating more of the water. We are drinking quite a lot, but as the day progresses, we are growing more thirsty. We drink more but go to the bathroom more frequently, our urine grows more diluted, and by the end of the day we find ourselves visibly dehydrated, with chapped lips and dry skin.

It may seem paradoxical in that while drinking water, we are getting increasingly more dehydrated. But it is not paradoxical. It is simply the consequence of the kidneys doing their work in trying to maintain constant blood plasma concentrations of sodium (and solutes). For those of us who have fasted on plain water for at least one day, you mostly likely know exactly what we’re talking about. For those who have not, you should try it and experience this first hand for yourselves. Avoiding dehydration in this case is simple: eat salt to match water intake.

If, on the other hand, we do not drink, then the blood gets more and more concentrated, the concentration of sodium and other ions, urea, and everything else for that matter, rises with time, and the kidneys keep trying, harder and harder with time, to maintain the osmolarity constant by retaining as much as they possibly can of the water that is present in the blood.

You might think: why not just eliminate some of the solutes to lower their excessively high concentration? But eliminating solutes can only be done through the urine, which means getting rid of water that, in this state of increasing dehydration, is far too precious, and the kidneys therefore try to retain as much of it as possible, hence concentrating the urine as much and for as long as possible to make full use of the scarce amount of water that is available for performing their functions.

But here is a crucial point to understand and remember: In order to reabsorb water, the kidneys rely on a high concentration of solutes—hyperosmolarity—in the interstitial medium through which passes the tubule carrying the filtrate that will eventually be excreted as urine. This is how water can be reabsorbed from the filtrate: the higher the difference in concentration, the more efficient the reabsorption.

If there is plenty of excess salt—sodium and chloride ions—then these solutes are what the kidneys prefer to use to drive up and maintain the hyperosmolarity of the interstitial medium, and urea can be excreted freely. If, however, there is a scarcity of sodium and chloride ions, then the kidneys will do everything to reabsorb as much of the precious ions that are in circulation to maintain adequate concentrations of these in the bloodstream, and at the slightest sign of water shortage and dehydration—to ensure the hyperosmolarity of the interstitial medium for maximum water reabsorption—the kidneys will begin to recycle urea, excreting progressively less of it as dehydration increases.

The thirst march - how it works in your body

Most of you will have experienced a long day walking around, during which you did not drink for several hours. You might have also noticed that you probably didn’t go to the bathroom either, which you may have found unusual compared to the frequency with which you usually need to when you’re at home or at work. You will have noticed that your mouth was drier and drier as the hours passed, but also that you felt more and more tired, heavy-footed and without energy.  

Eventually it struck you just how thirsty you were, or you were finally able to find water to drink, and drank to your heart’s content. As you drank, you might have felt a surge of energy within as little as a minute or two or even immediately following the first few sips. Soon after, you finally did go to the bathroom, and noticed how incredibly dark and strong smelling your urine was. Now you understand what was happening in your kidneys, why you didn’t go pee for these long hours, why your urine was so dark and smelled so strong. However, the reason why you felt your energy dwindle as the hours passed, and then return when you drank is still unclear.

Water in the blood regulates its volume. And volume in a closed system determines internal pressure. Our circulatory system is a closed system in the sense that there are no holes where blood either goes in or comes out. Yet at the same time it is not a closed system because water enters and leaves the system: entering the bloodstream through the wall of the intestines, and leaving through the kidneys and out into the urine.

All physiological functions depend intimately on blood pressure, whether it goes high as we face a fear or is as low as it can be during our most soothing and restful sleep deep into the night. And what is the primary regulator of blood pressure? The kidneys.

So, now you know why your energy faded as the hours passed or, more precisely, as the body got progressively more dehydrated. In a nutshell:

As water content decreases, blood volume decreases. As the volume decreases, blood pressure drops. And as blood pressure drops, energy levels go down.

Precisely how much salt should I be taking?

At Kalibra, we recommend 3-4 litres of water per day, with a total of 1-2 teaspoons of salt. This will ensure proper hydration of tissues by preventing excessive dilution of blood sodium levels, and maximum urea excretion.

Excess sodium, chloride and any other electrolyte will be readily excreted in the urine. However, if we were to drink less than the bare minimum of 2 litres per day, we should not take any salt (or food for that matter!)

If we drink more than 2 litres, we should match each additional litre of water with 1 teaspoon of salt, taking into account the salt contained in the food we eat. It is always better physiologically to drink more than to drink less. And remember that we hydrate most effectively on an empty stomach by drinking 30 minutes before meals.

Ready to get Kalibrated?

Read More

The 6 health needs for our total wellbeing

Health is wealth, and almost all of us would agree that we put our health first – always and without fail. However, even for those who follow through on this commitment, what underpins it is a relatively unstructured and mass trend-led process.

At Kalibra, we want to help people put intent behind their health. And that starts with knowing our individual body and condition, because whilst much of internal machinery is shared, we all have enough that sets us apart from others – and to make a meaningful difference requires a “personalised” approach.

And this is where things get difficult, because it’s hard to know what’s important to begin with, and even harder to know what’s most important to us. In the absence of an intuitive or subjective way to compare the various metrics or to understand their value, we collectively default to well-trodden universal shortcuts, such as 3 liters of water a day, 8 hours of sleep, 30 minutes of vigorous exercise, for instance.

And whilst that advice sets us in a good direction, for each of us there is a very personal 80/20 set of 3-5 actions that will have the most impact, especially if done over the long-term.

This post explains how Kalibra goes about identifying these actions and structuring them into a framework that makes it intuitive and easy to habituate them. We call it the 6 Circles of Health: Rest, Nourish, Move, Connect, Reflect and Grow.

Below, we briefly explain why each of these is important.

Rest

Stress + Rest = Growth. Whether you want to grow your body or mind or get better at a specific skill, you need to push to the outer limits of your current ability, before following the hard work with the appropriate recovery and reflection. And the latter is where most of us fall short, cheered on by the social media’s celebration of all out effort, 24/7. The reality is that rest is the alpha and omega of wellbeing, and despite all our efforts, we just cannot sleep faster. Similarly to the several misconceptions about how we lose body fat, sleep is now seen as something to “hack”. That, unfortunately, is not possible because the circadian rhythm has been wired into our bodies over thousands of years.

In the present environment, this is probably the key challenge for all of us. Sleep times are getting shorter, quality of sleep is reducing, and there are more demands on us cognitively as life patterns are being interrupted. However, nothing is more catastrophic to our longevity and wellbeing than not resting properly. At Kalibra, understanding how we improve and maximise rest is front and center.

Move

It is self-evident that we need to keep moving, but it’s key to emphasise the importance of resistance training for health and longevity. Most of us focus mainly on cardio, neglecting the fact that muscle mass decreases with age, regardless of gender. So, kalibrate where you are vs where you should be, and act accordingly. There are many ways to build and maintain muscle that don’t require being a gym-machine.

Nourish

You can't outrun a bad diet, the saying goes, and we agree. While sleep may be the most important, nourishment is often the most challenging. When considering building the appropriate nutritional plan, Kalibra sees 2 points as vital:

While we are taking in more calories, we are very often severely micronutrient deficient. A third of the world population is iodine deficient, and in many geographies, upwards of 80% of the population is vitamin D deficient. There is no way to know this without a blood test, and the compound effect of these deficiencies is significant.
Carbohydrate restriction, proper protein/fat intake and hydration are the usual areas of focus, and those are usually flagged in the lab reports referred to in point 1. So, start with insulin, glycated hemoglobin and triglycerides to understand where you are as a key baseline check.

Connect

How we connect with others is absolutely key for our happiness and healthspan . A seminal Harvard study shows that close relationships, more than money or fame, are what keep people happy throughout their lives. Those ties protect people from dissatisfactions in life, help to delay mental and physical decline, and are better predictors of long and happy lives than social class, IQ, or even genes.

In essence, most of us need at least 3-5 strong connections (think of it as people you can confide in, or call in case of a personal or medical emergency), and those connections need to be consciously nourished. With loneliness being front and center as a mental health issue, having a framework for making sure our relationships are maintained is key.

Furthermore, the strength of your connections is often in direct conflict with our digital lifestyle. Perhaps the most detrimental consequence of digital technology is the illusion of connection. We think we can connect meaningfully over a tweet or two. However, we’ve learned that nothing can replace in-person community and believing they can will come at a cost to our health. So we must invest in our connections, regularly, and intentionally.

Reflect

In addition to how we connect with others, how we connect with ourselves is key. Spending time alone, sitting and breathing allows you to (in the words of Tim Ferriss) step out of the washing machine and look inside it. And, therefore, see what may need a second, or third, wash.

This is the foundation of being less reactive and more detached from the noise of daily life. How well do you know yourself? Do you spend time alone? Can you spend time alone? Do you like it? Do you avoid it? Why? Who are you when you are alone with yourself and with nobody else around? How important are you to yourself?

It’s essential to take the time to reconnect with yourself, to establish this as a priority, to develop and nurture that connection. Only through this exploration will you be able to know how you are, moment to moment, and maybe eventually even know who you are, truly, beyond the social references that you use to define yourself against.

Grow

Growth describes the relationship between yourself and your future self, i.e. your purpose and trajectory, as well as the systems and mental models for its support.

Having an articulated life plan (however imprecise), goals, values and a growth method all contribute to wellbeing immensely. Having a why is a key tool in your resilience and coping arsenal, and needs to be cultivated on an ongoing basis.

How can we choose the direction we want to take if we don't take the time to look at it, reflect on it regularly and make a note of it. A value framework for life allows us to assess where we are, decide where we want to go, and make a plan on how to get there. This, in turn, reduces future anxiety and strengthens our resilience.

This is true for the few important things we need to get done today, it is true for the major projects we want to accomplish this year, and it is true for the place we want to get to in 5, 10, 15 years from now. And of course these will change, but the point is to think about, plan, map out your evolution, your own growth from your current to your future self, and make it happen. We finish, appropriately, with a Nietzsche quote: “He who has a why to live can bear almost any how”. This is what we look at when we talk about growth.

So, what should I do?

At Kalibra we see the 6 Circles of Health as the most robust framework for understanding and meaningfully improving your personal operating system.

Read More

Why we need to start with blood testing

At Kalibra, we believe in objective data and hard science as the basis for intentional health. And without a doubt, the starting point for a conversation about that has to be with the current state and functioning of the main systems of our body –because it is a combination of many systems that have to effectively work together for peak performance. It’s why we start our assessment process there.Simple blood tests are the best storytellers: they help us understand if we have a disease or optimal metabolism, if our kidneys and liver are healthy, and if our hormones are at the right levels. In order to be proactive about our health, we have to be clear on what we aim to achieve and create specific measures for the progress towards that goal. With the right data, we can determine our baselines and create a specific plan for fixing any imbalances, before they deteriorate or impede our quality of life.We acknowledge that blood testing is not quite as instantaneous or pain-free as other forms of self-tracking, but it is by far the best studied and perhaps most reliable, science-based dataset about ourselves. As we make changes to our lifestyle, fitness and diet, it gives us an objective marker of the results they are delivering.

What is bloodwork, exactly?

Lab tests, bloodwork, biomarkers or blood tests all mean one thing - taking out a sample of your blood and then analyzing it professionally in a lab. A blood sample can be extracted either via the vein using a needle or via a fingerpick, and hopefully one day via non-invasive measures, though the technology isn’t there quite yet.The extracted blood samples are run through biochemical analysis to look at different biomarkers, before being compared to common reference ranges (to assess normal/abnormal) The data can then be used to evaluate underlying bodily functions –even down to one’s mineral levels.One problem we are trying to address is how blood testing is often too technical and jargon-filled for people to make useful sense of. This is partly a problem of the unconsidered presentation of results, and also an artifact of medical knowledge being the preserve of medical professionals. The reality today is that you’re far more likely to have a doctor confuse you, rather than explain in an intuitive, helpful and engaging manner. For whatever reason that remains the case, we’re on a mission to disrupt this practice and change it for the better.The truth is that understanding your lab results isn’t actually that complicated. Here’s how it works: your blood test results are first compared to a simple reference range, and what is important for you to know initially is whether the result falls within the range of normal. And if not, what does that indicate and what steps can be taken to address it.

Why is regular blood testing important?

It can feel like blood tests are only there for when a problem exists. However, keeping tabs on what is going on inside your body is your core advantage in preventing problems down the line, and early detection of any issues gives you the best opportunity to course correct.We’ve put together what we consider the key reasons anyone should consider regular blood tests:

1. Objective and reliable baseline for health and wellbeing

By understanding your individual health data, you have the best idea of what you actually need to focus on. It enables you to meaningfully improve your health, rather than following for the latest fad.

2. Get an early warning for metabolic disease

Diabetes, obesity or insulin resistance (sometimes termed diabesity) is one of the major health problems facing us today. Within our blood, certain biomarkers exist to provide an early-warning system for these issues, which give us the best head-start in managing them.

3. Fixing small imbalances before they snowball

While blood tests often are used when looking at diseases, the benefit of regular blood tests is in noticing the small abnormalities, and their rate of change. That is a very valuable tool for preventing disease as early as possible.

4. Understanding the functional organs that purify your body: 

Your liver and kidneys are the window to your body. The liver is your detoxification system. Build up and abnormal levels of protein, albumin, globulin, or other markers could indicate imperfect detoxification of your body - a substantial health risk. 

Your kidneys help regulate things such as blood pressure, acidity levels, mineral concentration and water composition of the blood. The health and function of your kidneys can be seen by evaluating your blood and checking blood urea nitrogen (BUN) as well as uric acid, creatinine, and others. Maintaining good renal function and noticing poor drug interactions are key benefits of regular assessment.

5. Hormones - for health, mental clarity and emotional balance

There are several important hormones in our body such as testosterone, Progesterone, DHEA-S, and Estradiol. For example, research has indicated a relationship between lower levels of bioavailable free testosterone and depression in men, as well as correlations with diabetes, heart disease and Alzheimer’s. Getting a baseline of your levels and directional changes overtime is a key tool in our arsenal to improve the ageing process.

6. Maintaining a healthy cardiovascular system via homocysteine testing

Research has shown that elevated homocysteine (an amino acid) levels in your blood indicate a higher risk factor for coronary artery disease and stroke, as well as increased depression and increase in bone fractures. Keeping an eye on homocysteine is the first line of defence against cardiovascular disease.

7. Inflammation management  and C-reactive protein

Our bodies need a certain amount of stress in order to grow and optimise, and they manage this process through inflammation. Its function is to remove an injury or damage in the body and its cells. In the short-term inflammation is a normal process, but long-term, elevated levels of inflammation can indicate problems like atherosclerosis, heart disease, arthritis, autoimmune conditions and even cancer.Blood tests looking at C-reactive protein (CRP), a sensitive marker of systemic inflammation, have become increasingly popular. Various studies have shown how CRP can be used as a predictor of coronary heart disease and other diseases of the cardiovascular system. For athletes, especially endurance athletes, C-reactive protein (CRP) has emerged as a test to check on systematic overtraining.

What are the benefits for me?

1. Preventive care 

Prevention is better than cure, and early detection is the key variable that improves our chances of avoiding or mitigating a serious health issue. Many hearts, liver, kidney conditions and health risks can be diagnosed using blood testing.

2. Interpretation for weight, energy or mood fluctuations

As we make changes to our lifestyles, or our bodies undergo sudden change, we are often dealing with an incomplete picture of why things are happening the way they are. Thyroid, liver and kidney issues could be an underlying reason, and there is no way to know unless you test.

3. Macro and micro nutrients, and nutritional requirements

Proper nourishment is an essential part of maintaining good health, but we are often unable to tell what’s good for us or just popular trend-marketing. A nutritional deficiency can lead to issues like fatigue, headaches, insomnia, body odor, muscle cramps, and constipation. Addressing nutritional deficiencies head on is a great strategy for optimising performance and health.

4. Sex Hormones

Your lab results keep a record of testosterone and estrogen levels in the body. If you experience low libido levels, erectile dysfunction, infertility issues, or disinterest in sexual activities, the reason could be a drop in the levels of your sex hormones which can be addressed with supplementation and other methods.

5. Confidence that it’s not more than flu. 

Many ongoing serious infections start in your body with flu-like symptoms and can go untreated for years. Blood tests give us much-needed reassurance.

6. Personalising and customisation of your regimen. 

Your body is unique, so your health program should be fully customized to your individual needs. By undergoing regular blood tests, you can get the exact numbers that will help you plan your diet, training regime, supplementation and rest protocols.

Finally, the behavioural angle

At Kalibra, we look at the behavioural aspect of objective data as a key part of how we can be intentional about health. First and foremost, knowing that something needs attention is a great motivator to make changes to our lifestyles.However, regular bloodwork is important for a second reason - kalibrating our objective data vs our subjective perceptions. We regularly misremember things and have an overly optimistic view of our own habits. Indeed, we often see regular slip-ups as one-offs, before erasing them from our memories.Consider this: we swear we don’t eat carbs and sugar, but still have elevated glucose and H1C. That could be because of bad habits, or it could be the sign of a more serious condition.The only way to be absolutely sure is to have a scientifically objective benchmark on our body’s current condition. That is how we can make positive adjustments, or mitigate the mind games we play with ourselves. But that’s the subject of another post here.

Read More

Why every undigested protein is an allergen

We come out of our mother's womb, and we are very soon thereafter given a bottle to suckle on. In the bottle there's a powdered 'infant formula' mixed with water, or milk, or both. "The most commonly used infant formulas contain purified cow's milk whey and casein as a protein source, a blend of vegetable oils as a fat source, lactose as a carbohydrate source, a vitamin-mineral mix, and other ingredients depending on the manufacturer" (source: Wikipedia). The water is municipal tap water with residues of agricultural and industrial chemicals, of prescription drugs of various kinds, fluoride that suppresses the immune system and makes the bones and teeth brittle, and chlorine that kills the bacteria and destroys the flora of the gut. The milk is most likely UHT, which stands for ultra high temperature pasteurised, cow's milk from cows that have never set food outside, have never eaten a blade of grass, have only ever eaten soy, oats, and corn, and have their whole lives received antibiotics preventatively to lower the probability infection due to the fact that they are sick and immunosuppressed from the living conditions they are subjected to. How's that for a start?

We start teething and we are given 'teething cookies' to nibble on. Cookies, like Gerber's classic arrowroot cookie, made wheat and arrowroot flours, dairy proteins and solids, vegetable oils, sugars, and other stuff like stabilisers, preservatives, texture and flavour enhancers, and some added vitamins and minerals, of course.

We don't need to have teeth to have ice cream. In fact, parents are encouraged to give cold things like ice cream teething infants to soothe their gums aching from the teeth pushing through them. And we love it, of course! We're still far from being able to speak, but we eagerly await the next spoonful, which, if delayed too long, makes us impatient, and soon angry enough to cry out and let our parents know we want more.

Naturally, we never make a fuss when we are fed apple sauce, or pear sauce, or pureed bananas, peaches, or apricots, nor when we are are given mixes like banana-strawberry, or strawberry-kiwi, or even apple-carrot-parsnips. We also like sweet potatoes, squash, and even regular mashed potatoes with our pureed meals. But the green things like mashed pees or broccoli, that we like less---quite a lot less.

We always start the day with orange juice. In fact, this is so much a part of our upbringing that we can't even imagine a morning with having orange juice. And as soon as we can chew, our breakfast is made of those delicious, sweet and crunchy cereals served in a big bowl of milk. This is another part of our upbringing that is so much a part of us that we often consider it a normal part of life, and can't imagine a life with it.

We snack on cookies, on muffins, on granola bars, and particularly like the chocolate covered ones. We snack on chips, crunchy and salty---on Doritos, Pringles, and all sorts of different kinds of chips---and we love them too. We love our regular home pasta dinners, our pizza dinners, our hot dogs, our burgers, our fries. When we're hungry in the afternoon, we make ourselves those delicious peanut butter and raspberry jam sandwiches on ultra moist slices of white bread, and they're so good we have a hard time to stop eating them one after another. And what about our Nutella, that amazing chocolate spread we can never have enough of? We really could eat the whole jar if we didn't force ourselves to stop. It's so delicious we even eat it by the spoonful when we don't feel like having bread with it. And they tell us it's good for us, that's a good source of nutritious milk and hazelnuts. Wow! How great!

We get sick pretty often as school children, but not more than anyone else, about ten times a year or so. Our parents seem to get colds less often than we do, only about 4 or five times per year. Sometimes it's worse than others, and we are given antibiotics. We take them because our parents give them to us. And they give them to us because our family doctor tells them to. We get loose stools for a while, and we don't understand why. After some time, things kind of get back to normal.

We go on like this for years. Actually, usually for at least two or three decades. Everything we do destroys our gut flora. All the foods, the chemicals, the drugs, destroy the essential health-promoting bacteria and the balance between the different varieties that are meant to populate the gut, and at the same time promote the overgrowth of specific kinds of pathogenic bacteria and yeasts that take over our gut.

All the foods we eat are loaded with lectins that damage the lining of our gut, making it thinner, less functional, less protective, and more vulnerable to further damage. This damaged gut with its damaged lining and damaged glycocalyx becomes leaky. Not only do we not digest food properly, not only do we not absorb nutrients properly, not only do we not excrete wastes properly, but all sorts of stuff starts leaking from our gut into our blood. And possibly the worst thing that can happen is to have a leak into our bloodstream of undigested proteins.

The reason is that undigested proteins in the blood trigger the immune system that responds to them as allergens. As this is the result of a degenerative process, and is therefore a chronic condition that grows more severe with time, the dysfunction eventually manifests itself into auto-immune disease conditions. Those 'incurable' disease conditions on which modern conventional medicine has given up. This is how serious it is.

Proteins from out food are not meant to enter the bloodstream---ever. So much so that the kidneys will completely clog themselves up trying to remove proteins from the bloodstream to the point of kidney failure. Proteins are meant to be broken down into the much smaller units of which they are made called amino acids. And breaking down proteins into amino acids is meant to be done by the stomach before entering the intestines. Hence, having not fully broken down proteins in the gut can only really happen if they haven't been broken down while they were in the stomach. Clearly, it isn't therefore only the gut that is dysfunctional and damaged: the stomach must also be dysfunctional in some way to allow these undigested proteins to pass into the intestines in the first place.

We have previously looked in detail at the process of digestion in Understanding digestion. The essence of what we need to know is that the stomach has specialised cells whose purpose is to secrete hydrochloric acid to break down proteins; that acid is produced when these cells detect the presence of protein in the stomach; that as proteins are broken down, the pH rises and the stomach secretes more acid to keep the pH low in order to continue breaking down the protein; that when the pH stays low for a few hours or so, this signals that all the proteins have been properly broken down, and that the chyme (the processed contents of the stomach) can be transferred to the small intestine; and that at which point the stomach valve opens, the acidic chyme moves through, and the pancreas injects into the small intestines a concentrated solution of bicarbonate to neutralise the acid which would otherwise damage the lining of the intestines. This is how it's supposed to work.

But if there isn't enough bicarbonate in the system, the pancreas cannot do this properly. If there isn't enough water, the pancreas cannot do this properly. If the stomach doesn't produce enough acid, the proteins are not broken down properly. And if the acid producing cells of the stomach are not regularly exposed to high concentrations of hydrochloric acid, they lose their ability to produce it. This happens when little or no concentrated sources of protein are eaten, like when we are vegetarian or vegan for a long time. But it also happens when the lining of the stomach, which is supposed to be protected by a thick layer of mucus while digesting protein, is instead exposed to and damaged by its own hydrochloric acid. This happens when there isn't enough water to make that protective layer of mucus, and it is why we should drink water before meals.

So, here's what we get: not enough water or bicarbonate---loss of acid-neutralising function of pancreas, and damage to intestines; not enough protein in the diet---loss of acid production ability, and undigested proteins; not enough water---damage of stomach lining, loss of acid production ability, and undigested proteins; undigested proteins---chronic immune response to circulating allergens and autoimmune disease conditions. This is compounded with the damage that results from exposure to chemicals and antibiotics, from the overload of sugars and starches, and from the destruction of the cells lining the gut by the lectins in our diet.

The end result is, as expected, precisely what we observe: a population where basically everyone has, to some extent, compromised digestion, and therefore, a population where everyone is, to some extent, sick. Because we don't know any of this, because we don't know how food affects the body, because we don't know how the organs of the body function, because we don't now how digestion works, and because nobody else around us knows any of it either, we believe everything is normal and everything is just fine, just as it should be, just as it always has been. But the truth is that it isn't.

What's actually hard to believe is how simple the solution is: 1) avoid as much as possible exposure to chemicals and antibiotics, and adopt measures to systematically help the systems of the body cope with and recover from the exposure we cannot entirely avoid; 2) avoid as much as possible the overload of sugars and starches, and focus on animal protein and fats from free range animals, and green vegetables. This will automatically lead to a nutrient-dense, whole foods diet that also minimises exposure to gut-damaging lectins; 3) drink plenty of clean water to ensure good hydration, especially with enough time to replenish the stomach's and pancreas's reserves before meals, and take a little extra bicarbonate on an empty stomach with your first glass of water in the morning to maintain a good alkaline buffer and balance.

[gallery ids="11637,11636" type="rectangular"]

This strategy is so simple, and yet it is both preventative and curative. The extent to which we need to be strict depends on the extent of the damage from which we need to recover. And as it true for everything, it's far easier to prevent damage than to recover from it. That's obvious but it's good to remind ourselves of it when our motivation weakens or strength of will falters. The amazing news is that, as shown by doctors Terry Wahls and Steven Gundry who specialise in the treatment of autoimmune disease conditions, recovery from even the most severe cases is virtually guaranteed and only a matter of consistency, patience, and time. I hope this is enough of a motivation for you. Enough of a motivation to at least start to make the effort to regain and then preserve the health of your gut and digestive system---the system on which everything about your health depends.

Oh, and breakfast? Just skip it and have your first meal at lunchtime. Breakfast is not, as we have been told over and over again, the most important meal of the day. It's actually the most important meal of the day to skip. We'll get back to this point some other time.Thank you to all our patrons, and in particular Eric Peters, for their continued support. Become a proud sponsor of healthfully and join our patrons today!

Read More

Every undigested protein is an allergen

If someone asked you what you thought was the most fundamental, the most essential, the most important health challenge that we face as modern human beings living in industrialised countries, what would you tell them?

Take a moment. Shift your gaze away from this text, and think about it.

When we read or hear something about health and nutrition in the news, on websites, on blogs, on social media, or even in books, the information we encounter is almost always biased and directed in some way. It is also always restricted in scope. In fact, it is usually very restricted in scope. All this is perfectly natural and expected: whenever we sit down to write, it is usually about something in particular, something specific, some topic we want to address or explore. It's hard to think of circumstances where this would not be the case.

Moreover, basically everybody who writes anything, does so in order to be read, and therefore naturally attempts to appeal as much as possible to their readership, both in content and in style. But maybe the most influential factor is that we have grown accustomed to information packets, to bite-size bullets of information: quick-to-read, quick-to-scroll-through, and quick-to-either-share-or-forget. And this has above everything else shaped the way information is being presented by all those people out there trying to appeal to more readers. Little can be done to counter this tendency. It's just how it is at this time.

As a consequence, for all these reasons, we are---the whole world is---migrating away from the mindset that encourages inquiry into the global, the general, the underlying aspects of things. Instead, we are migrating towards an evermore concentrated, focused, laser-beam approach to basically everything. This is true in all fields of study and inquiry to some extent. In matters of nutrition, it is particularly noticeable, and the reason is surely at least in part because we tend to be at the same time very interested and highly sensitive to advice about what we should or should not eat. We take such advice very personally, and often react strongly to it.

Our relationship to food is very deep because it is so constant and continuous, so intimately related to our survival. This relationship starts when we come out of our mother's womb, and persists throughout each day, every day of our life, until this life of ours itself comes to an end. What in addition makes this relationship so close and so intense is that if we don't drink or eat, usually even for a few hours, we get headaches and stomach aches, we get light headed, weak, and unable to concentrate and function, we get grumpy and irritable. It is very clear and naturally understandable that we therefore tend to be---that we are---very sensitive to advice about what to eat, but immensely more so to advice about what not to eat, especially if we happen to eat those foods about which the advice is given.

Hence the movement to superficial, non-contentious, bite size bullets of information: 'blueberries are excellent: they are low in sugar and full of antioxidants'; 'avocados are amazing: they are not only full of healthy fats but they are also alkalising'; 'hydrogenated vegetable oils are very bad: they are full of toxic trans fatty acids.'

But what about the essential, the fundamental, the underlying aspects of things?

You have had more than a few minutes to think about it. What would you say, then, to this question of what is most fundamental to the health, to what constitutes the most fundamental health challenge we face? I would say it's digestion.

Digestion is where everything about us begins and ends. It is in and through the digestive system that we absorb all the nutrients from our food and excrete all solid wastes. It is through the digestive system that we absorb all the constituents of everything that we call body, and excrete all that is toxic, be it produced from the environment or from within through healthy digestive and metabolic processes. Do you find this sufficient to illustrate why digestion is so fundamental? For me it is. But we can go a lot further.

Evolutionary considerations, arguments, and observational evidence, are always useful, and usually very powerful in guiding clear thinking about matters of health. One of the main questions that has and continues to preoccupy evolutionary biologists is that of the growth of the human brain. In this, one of the most compelling ideas put forward to explain its evolutionary history is called The Expensive Tissue Hypothesis. I plan to, in the future, devote much more time to it. But I must refer to it here because of its relevance to digestion.

The Expensive Tissue Hypothesis is based on the fact that there is a strict minimum to the amount of calories any animal requires to survive, the observation that the brain is the most metabolically expensive organ in the body, and the conclusion that it would be very hard for any large complex animal to sustain two systems as energetically expensive as the brain. Because the gut is the second most metabolically expensive, and because both the brain and gut together account for a disproportionately large fraction of the body's caloric needs, an increase in the size of the brain would necessarily be at the expense of that of the gut, and vice versa. It simply would not be possible to sustain both a large brain and a large gut. And thus, the growth of the brain would have to be accompanied by a shrinking of the digestive system. This is what is observed.

However, it is important to emphasize that it is the shrinking of the digestive system that allowed for the growth of the brain; not the growth of the brain that precipitated the shrinking of the gut. The growth of the brain would only be possible with a surpluss of calories for it to growth and have its increased activity sustained. It is even more important to emphasize that this evolution was the unintended consequence of a shift from a high-fibre, nutrient-poor, plant-based diet, to one consisting mainly of low-fibre, nutrient-rich, animal-based foods.

[caption id="attachment_12836" align="alignnone" width="2121"]

Number two Silverback Mountain Gorilla (Gorilla gorilla beringei) of Kwitonda Group, Akarevuro, Virunga Mountains, Rwanda

Male mountain gorilla of the berengei berengei subspecies of eastern gorillas in Ruanda (Source: Time). As you can see from the chest muscle definition, this adult male's bodyfat is low. The huge bulging belly that is apparent when they are seated and relaxed is the consequence of having it hold the very long gut required to process each day approximately 20 kg of fibrous roots, leaves, and stocks of the plants they eat.[/caption]

It is very interesting---and it is surely related to this evolutionary history---that the gut has by far the largest number of nerve endings, second only to the central nervous system. Moreover, unlike other organs and systems of the body, all of which are entirely controlled by the brain, it is the only one with directive nervous signalling to the brain. Because of this, it is the only organ with a direct influence on the brain. Thus, besides the physical implications, some of which we'll explore soon, it is quite literally the case that a happy gut means a happy brain. And conversely, a sad, unhappy, depressed brain is very likely to be caused by a dysfunctional gut.

It is a sick, dysfunctional, damaged gut that is the primary characteristic underlying states of disease. This is why I would say that it is a sick, dysfunctional, damaged gut that is the most fundamental health challenge we face today as modern human beings.

I know this might leave you hanging. Especially because we have not yet made any reference to the title. But I promise, we'll pick up from here next time.

Thank you to all our patrons, and in particular Eric Peters, for their continued support. Become a proud sponsor of healthfully and join our patrons today!

Read More

Understanding the role of vitamin K-dependent proteins in vascular calcification

What if the process of arterial calcification was regulated from within the cells of the blood vessels, and that it had nothing directly to do with what you ate and what circulated in the bloodstream because calcification takes place not anywhere near the surface but inside the blood vessel wall?

What if the process of arterial calcification was actually a process by which muscle is transformed into bone, a process by which vascular smooth muscle cells transform themselves into bone cells which then actually build bone tissue within the blood vessel wall?

And what if apoptosis preceded calcification, what if cell death was what triggered the process of calcification, and it was the apoptotic bodies of dead vascular smooth muscle cells within the blood vessel wall that served as the nodes around which calcium crystals formed?

Would you not find this shocking? Find it incredible that any of these could be true, let alone all of them? It's entirely not at all what we've been told by "health experts" and "health authorities" for more than half a century!

All of these statements are hard to believe. It is especially unbelievable that muscle cells can change into bone-building cells, and begin to grow bone tissue within the artery wall. It sounds surreal, kind of like science fiction. But it isn't. All of it is true. All of this has been observed.

Interesting, you may think, but what does any of this have to do vitamin K? Everything! It has everything to do with vitamin K.

How clever we are

The sophistication and precision of biochemical reactions and processes in animals and humans are mind blowing. Understanding how they work is a wonderfully noble endeavour that is certainly very fulfilling in its own right. In some cases though, it can be a matter of life and death. And in the case of the processes related to and regulated by vitamin K dependent proteins it definitely is.

This is not an exaggeration to push you to read on. It's a statement of fact. And you'll see how this is true by the time we finish. I believe it is essential, for each one of us to understand the details of how things in our body work and how they are related and connected in order to appreciate their significance and their importance.

We are so clever. We can figure out such complicated things when we put our minds to it. Things like complex biochemical pathways, or long chains of enzymatic reactions that, one step at a time, transform molecules from one form into another. And it is this kind of cleverness that has enabled us to develop the hundreds of different types of medications we can find today in drug stores.

We have designed medications to address basically every symptom we can think of. If it's a symptom we've had, it's most likely a symptom that many others have or have had. And if many have the same or a similar symptom, we can be sure that at least one pharmaceutical company will have made a drug for it.

Warfarin was developed in the 1950s to prevent or at least suppress coagulation, and in so doing help prevent or at least reduce the number of strokes and heart attacks. Because so many people either suffer from, are susceptible to, or are at risk of cardiovascular disease, many people take warfarin.

And what I mean by many in this case is between 20 and 30 million prescriptions per year in the United States alone. The number went up to 35 million in 2010 and dropped back to 20 million in 2015. That's a lot of warfarin pills! You can see the stats here (http://clincalc.com/DrugStats/Drugs/Warfarin). Warfarin is in the top 50 drugs. It's 42nd down the list. Just below aspirin at 39, insulin at 36, and ibuprofen at 34, as you can see here (http://clincalc.com/DrugStats/Top200Drugs.aspx).

Surely close to every household in the western world will have somewhere in a bathroom cupboard or drawer a bottle of aspirin or ibuprofen. Given how close to warfarin they are in popularity of usage, there's clearly no need to even say that this anti-coagulant drug is in broad and widespread use.

Isn't this great, though? Millions of people at risk of having blood clots that would possibly cause them a stroke or heart attack, protected by taking a little warfarin every day? Yes, I suppose in some ways, it is, if these people are actually at risk. But, unfortunately, with a drug like that, we can be pretty sure that most are taking it preventatively, as in, just in case. And this is a problem.

Warfarin works by disrupting the process that leads to the activation of coagulation factors. The blood's ability to form clots quickly is one of its most vital functions, because without it we would just bleed to death from a flesh wound. Evolutionarily, we simply would not have made it to here without this protection mechanism that ensured that when we were wounded, the blood would immediately thicken to stop it bleeding out of our body by forming clots at the surface of the open wound as fast as possible. The special proteins responsible for regulating coagulation are vitamin K-dependent proteins (VKDPs).

It has taken a long time to understand, first of all, that there wasn't just vitamin K, but in fact two different kinds of vitamin K. It is also true that it has taken a long time to identify the major vitamin K-dependent proteins and figure out how they work. We are talking about 40 years from the 1950s to the 1990s. So, you really shouldn't be surprised if you haven't read or heard about this before.

But today, a lot has been understood through in vitro and in vivo observations, trials and studies both in animal models and in humans. And even though we will inevitably continue to deepen our understanding of the subtleties of the molecular mechanisms, the species, and the interactions involved in the life of cells and proteins in how they affect the state of our blood vessels and organs, this is a sketch of the picture we have at this stage.

Vitamin K dependent proteins

There are about twenty identified VKDPs belonging to two classes: hepatic---those produced by the liver, and extra-hepatic---those produced in other tissues. Those from the first class are the most well-known and well-studied. They are the coagulation factors (II, VII, IX, and X) manufactured by the liver and activated within it before being pushed into the bloodstream and circulated throughout the body to maintain a healthy coagulation response in case it is ever needed. These are the ones targeted by warfarin. Naturally, since that drug has been around since the 1950s, the role and function of these vitamin-K dependent coagulation factors have also been known at least since that time.

The second class is less known and less studied but has---luckily for us---gained much more attention in the last two decades. It includes three very important proteins whose functions are essential in maintaining healthy blood vessels. But unlike the coagulation factors produced in the liver, these proteins are instead produced by the vascular smooth muscle cells and activated there locally in the vasculature. These vascular health factors, we call them that in analogy to but to distinguish them from the coagulation factors, were identified much more recently in the 1980s and 1990s. All are proteins that contain gamma-carboxyglutamic acid abbreviated Gla.

Some important ones for us here are osteocalcin, for which it took 30 years to be identified as an inhibitor of calcification when it was discovered in vitro to prevent the precipitation of crystals in a supersaturated calcium solution. This means that without it, calcium crystals would have inevitably formed spontaneously in the solution. Osteocalcin is also called bone Gla protein. Growth arrest specific protein 6 is involved in the regulation of cell proliferation, and seems to inhibit premature cell death. And the most important one in relation to soft tissue calcification, matrix Gla protein abbreviated MGP.

Matrix Gla protein was originally isolated from bone, but it has been found to be expressed in several other tissues including kidney, lung, heart, and---most critically---vascular smooth muscle cells or VSMCs. It is now known to be the most potent inhibitor of calcification of blood vessels, and even though the liver does produce and secrete MGP into the bloodstream, only the MGP produced in the vasculature inhibits calcification.

Besides being produced in different tissues, another important difference between the two classes of VKDPs is that the liver-produced coagulation factors are phylloquinone---or vitamin K1-dependent, whereas the vascular smooth muscle cell-produced proteins are menaquinone---or vitamin K2-dependent. In light of the fact that it is rather hard to find vitamin K1 insufficiency with a diet that contains at least some green plant foods, while the exact opposite is true for vitamin K2 of which the western diet is practically devoid, this difference is highly significant.

Both vitamin K1 and K2 are absorbed in the second and third portions of the small intestine, the jejunum and ileum, K1 is delivered to the liver, whereas K2 is transported via LDL and HDL to other organs. K1 is mainly found in the liver, whereas K2 is preferentially stored in peripheral tissues, with the highest levels in the brain, aorta, pancreas, and fat tissues. This obviously attests to the importance of these essential vitamins.

While vitamin K1 and K2 are really two different vitamins with different functions, transport mechanisms, and distribution in the tissues, and while there are several differences between the vitamin K1-dependent and the vitamin K2-dependent proteins, these have one essential thing in common. This is, as their name says, that they are vitamin K-dependent. What this means is that all these proteins share the same enzymatic chain of activation---whether it mediated by K1 or K2---that transforms them into their biologically active form, the form they need to have in order to do the things they are meant to do.

All VKDPs must be carboxylated in order to be activated. The process is complicated and not yet completely understood. We know that it is targeted to the glutamic acid (Glu) residues on the protein that must be made into gamma-carboxylglutamic acid (Gla). We also know that the process is mediated by the enzyme gamma-glutanyl carboxylase (GGC), and that vitamin K is the main co-factor that enables the enzyme to perform the activation. In the end, the process leads to the addition of a carbon dioxide molecule to the gamma-carbon of Glu, which transforms it into Gla. However, it is the reduced form of vitamin K that is required.

Vitamin K, whether it is the plant-based phylloquinone (K1) or the animal-based menaquinone (K2), enters the body through the diet in its non-reduced form. Reduction involves the addition of hydrogen in molecular form, H2, to make KH2. Transformations of this kind are generally always done by enzymes, and so is this one. In this case the enzyme is vitamin K epoxide reductase (VKOR). Its action is essential because it is the reduced form KH2 that acts as the co-factor in the process of carboxylation.

The energy released by the oxidation of KH2 drives the addition of the carboxyl group unto the glutamic acid residues. But the oxidised form of vitamin K, KO, can subsequently be reduced again to KH2. Thus vitamin K is first reduced, then oxidised to help push the carboxyl group unto the glutamic residue, and then reduced once more to start the whole cycle again. This cycle is called the vitamin K epoxide reductase or VKOR cycle.

For this class of proteins, the VKDPs, activation through carboxylation means for them to acquire the structure and properties needed to bind calcium in order to transport it. You may recall from a previous chapter in the story of vitamin K2, matrix Gla protein generally transports calcium out of soft tissues in order to prevent calcification, and bone Gla protein generally transports it into bones and teeth to prevent osteopenia, osteoporosis, and tooth decay.

The big red flag

Now you understand why it is that when, in our remarkable cleverness, we understood that the main coagulation factors depended on the action of these enzymes to be activated and rendered functional, we naturally concluded that the best way to prevent clot formation would be to prevent coagulation, and that this could be achieved by blocking these enzymes from doing what they are intended to in a healthy organism. This is precisely what warfarin does.

And it does it well. Otherwise it wouldn't have become as commonly used as it is. And we can be certain it has saved a lot of people much of the pain and possibly life-threatening conditions that a blood clot could have caused them. The problem is that the vascular health factors so critical for maintaining healthy blood vessels, depend on the same enzymes for activation as do the coagulation factors. Preventing the carboxylation of coagulation factors, prevents, in exactly the same way, the carboxylation of the vascular health factors.

This was only understood to be a major problem relatively recently. We first had to understand that there isn't just one kind of vitamin K, but that there are two, and that they are very different in their functions. We had to understand that both vitamin K1 and vitamin K2-dependent proteins rely on the same enzymes to get activated. We had to understand the carboxylation process by which they are activated. And we had to understand that MGP, BGP, and Gas 6 are vitamin K-dependent proteins, that they are specifically vitamin K2-dependent, how they are activated, what they actually do in our veins and arteries, and what happens if they can't do what they are designed to do.

A major red flag about anticoagulants and warfarin came up from what was seen in mice. The first part of the study was with MGP-knockout mice, (mice in which the MGP-encoding gene was deactivated). They were observed to have stunted growth from the premature calcification of the epiphysis---the part at the end of bones and at the junction with the cartilage of the joint which allows the bone to grow longer. As as soon as the epiphysis calcifies, longitudinal growth stops. But this was the least severe of the problems that were observed.

The MGP-knockout mice very quickly developed severe arterial calcification, and died highly prematurely, within 6 to 8 weeks, of strokes, heart attacks, and rupture of the aorta. Normal lab mice live 2 to 3 years and some even up to 4 years. So, in the least extreme case, a MGP-knockout mouse dying from aortic rupture at 2 months instead of living a relatively short normal life of only 2 years, would be equivalent for a human that would normally live to the age of 72 to die at the age of 6!

Here is what severe coronary calcification looks like in humans:

[caption id="attachment_12819" align="alignnone" width="1181"]

severe_coronary_calcification

Severe coronary calcification in a patient with end-stage renal disease. We can see that these blood vessels are basically filled with bone tissue that appears bright white. (https://www.bmj.com/content/362/bmj.k3887)[/caption]

It was also observed that although the liver did produce and release MGP into the bloodstream, it had no effect on the arteries. Only the tissue-specific, locally-produced MGP within the vascular smooth muscle cells was able to inhibit calcification.

To check these conclusions, a similar study was done on normal mice that were given vitamin K1 to ensure proper liver function and healthy coagulation, and warfarin to block all extra-hepatic MGP action in tissues. The result? Stunted growth, pervasive arterial calcification, and premature death from stroke, heart attack, and aortic rupture.

The conclusions were solid: matrix Gla protein is the organism's primary protection against soft tissue and arterial calcification; liver MGP has no protective effect on arteries, and only VSMCs-produced MGP can inhibit calcification in the arteries; both vitamin K deficiency and disruptions of the action of the enzymes that activate MGP cause extensive soft tissue calcification; and only vitamin K2, not vitamin K1, can inhibit warfarin-induced calcification.

Going further

When this was understood, more attention began to be paid to matrix Gla protein. Many other details were elucidated through further investigations. It was found that MGP is an 84-amino acid protein with five Gla residues. That all of these Gla residues are produced by gamma-carboxylation, which is mediated by the enzyme gamma-carboxylase that requires vitamin K2 as a cofactor, and that until now, the only known function of Gla residues is to bind calcium ions and crystals (calcium apatite). It was discovered that the concentration of calcium and phosphate in extracellular fluids is high enough to trigger and sustain growth of crystals, but that MGP and BGP prevent this from happening. That MGP is required by VSMCs to maintain their elastic and contractile nature. And not just that.

MGP actually inhibits the transformation of VSMCs into bone cells by antagonising the action of Bone Morphogenic Protein 2 (BMP2). It turns out that the muscle cells of the blood vessels have in them the potential to either stay smooth elastic contractile muscle cells, or turn into osteoblast-like bone building cells. BMP2 triggers that osteogenetic gene expression in the VSMCs: it tells muscle cells of the blood vessels to transform into bone-building cells. And as if this wasn't enough, BMP2 also induces apoptosis: it tells blood vessel muscle cells to commit suicide, which is certainly to help in the process given that once dead, they can be used as seeds for calcium crystal formation, and thus promote a faster and more efficient calcification.

What induces expression of BMP2 in cells? Probably several things that we haven't yet identified. But for now we know that BMP2 is stimulated by oxidative stress, chronic inflammation, and high blood sugar levels. The good news is that MGP protects against all of these effects by antagonising BMP2. So if there is enough MGP and enough vitamin K2, if there are no disruptions to the action of the vitamin K dependent enzymes by anticoagulants like warfarin, and if oxidative stress, inflammation, and blood sugar are kept low, then there is protection against calcification of the arteries and other soft tissues like the liver, kidneys, and heart.

Recap

Here we have it. We have now understood the role of vitamin K dependent proteins in vascular calcification. And although it was a little long and maybe somewhat arduous, all the details are clear. It is complicated. I won't deny that. But I have strived to make it all as accessible as I could without diluting the mechanisms of action and relationship between the different players. Let's recap to make sure you are left with the essential elements in mind.

Vitamin K dependent proteins can either be vitamin K1 or vitamin K2 dependent. The dependence comes from the fact that vitamin K is required to activate the protein. This activation is the carboxylation in which a carbon dioxide is added to the glutamic acid residues along the protein. Carboxylation is mediated by carboxylase (GGC) that requires the reduced form of vitamin K in order to oxidise it and get the energy to push the carbon dioxide molecule onto the glutamic acid residue. Vitamin K is reduced by reductase (VKOR) which can do it over and over again in what is called the VKOR cycle.

Vitamin K1 dependent proteins are mostly liver based coagulation factors. Vitamin K2 dependent proteins are mostly outside the liver and generally involved in inhibiting soft tissue calcification. The most important calcification-inhibiting VKDP is matrix Gla (MGP), which performs a wide range of tasks to maintain elastic, flexible, calcium-free blood vessel walls.

Calcification is triggered by the death of vascular smooth muscle cells. These dead muscle cells act at seeds for calcium apatite crystals to form. VSMCs can be induced to become osteoblast bone-building like cells that then go on to stimulate the growth of bone tissue within the artery walls. This process is stimulated by bone morphogenic protein 2 (BMP2), which is expressed under conditions of oxidative stress, inflammation, and hyperglycaemia.

To prevent and reverse calcification the most important is to provide a good supply of vitamin K2 through diet and supplementation. Because it is essential in the activation of Gla proteins but only through its role in the VKOR cycle, the amount of K2 is the rate limiting factor. Hence more is better than less, and excess will simply remain unused but will not cause harm.

Naturally, matrix Gla protein needs to be available. Cells of tissues where calcification occurs (kidney, liver, heart, and blood vessels) secrete MGP. An interesting evolutionary self-protection adaptation mechanism. And here's another: the amount of MGP that is produced by a cell depends on at least two factors that have been identified. One is the amount of calcium; the other is the amount of vitamin D3. In both cases, the more there is, the more MGP is produced.

So, vitamin D3 has the role of making calcium available but at the same time stimulates the production of MGP in order for the calcium to be available to the bones and not to the soft tissues. But for this, it relies on vitamin K2. This is why vitamin D3 without vitamin K2 leads to calcification: because MGP and BGP remain inactive and incapable of binding to the calcium ions to move them into bones and out of tissues. On the other hand, plenty of vitamin K2 would indeed activate the available MGP, but without enough vitamin D3 there might not be enough MGP to confer proper protection against calcification. This is a perfect example of the complementarity of action and function in essential micronutrients. There are certainly many more, but this one is particularly remarkable.

Final thoughts

I want to close on a final consideration. It is so easy and seems so natural for us to think in terms of this and that, good and bad, for and against, that our tendency is to look at everything in these terms. This is also true when we look at biochemical processes like the ones we have described and explored here. We naturally lean towards looking at the calcification inhibiting mechanisms as protective, and those that promote calcification and apoptosis as destructive.

But the reality is that cells, proteins, and enzymes don't behave in these terms, they don't think in these terms simply because they don't think. They react biochemically to what they are exposed to, to the molecules and chemical messengers they encounter, to the quality of the liquids in which they bathe, to the characteristics of the environment in which they live, microsecond after microsecond, without any forethought or concern for the microsecond that will follow. The only guiding principle that can be used to lead us to understand why things happen the way they do is evolutionary adaptation to survive.

Having recognised this, we immediately see that the mechanisms that promote apoptosis of VSMCs, their subsequent transformation to osteoblast-like cells, and the growth of bone tissue within the artery walls that we refer to as arterial calcification, can only be a protection mechanism. A mechanism to protect the tissues and cells from the damaging effects of exposure to free radicals, inflammatory molecules, and glucose. Because, as we have seen, the process is reversible, it would be perfectly natural to undergo periods of calcification followed by periods during which the bone tissue is broken down and removed from our arteries and other soft tissues and organs when the circumstances allow it. Actually, we should say when the circumstances dictate it, because no matter what happens, it is always the circumstances---the environment---that dictate what is to happen.

What we can do, with the knowledge of what we have understood, is make choices about what we eat and drink, when and how much we eat, and how we live, sleep, and exercise. Choices that will shape or reshape, define or redefine the makeup of this internal environment of the body to always move us in the direction of optimal biochemistry, optimal physiology, optimal metabolism, and optimal health.

Everything that we explore together is always about just this. But sometimes the corrective action requires effort, sometimes even a lot of effort. In this case, however, it is as simple as can be, because it only requires us to supplement with vitamin K2 and possibly also D3. Of course, the last thing we want is a lifestyle that promotes the expression of BMP2 and the growth of bone tissue within our arteries. But supplementing with K2 and D3 together will in general bring only benefits. I know it was a very long-winded way to get to this, but now you understand why. That was---and is---the whole point of this blog, after all. I hope you enjoyed reading.

The information in this article comes primarily from the following papers: Molecular Mechanisms Mediating Vascular Calcification by Proudfoot and Shanahan (2006); Vitamin K-dependent Proteins, Warfarin, and Vascular Calcification by Danziger (2008); The Role of Vitamin K in Soft Tissue Calcification by Theuwissen, Smit, and Vermeer (2012).Thank you to all our patrons, and in particular Eric Peters, for their continued support. Become a proud sponsor of healthfully and join our patrons today!

Read More

Insulin and Triglycerides

Every time I review someone's blood test results, and then discuss with them what they mean and what they should do to improve their numbers, there's something I almost always have to explain. And this was the relationship between fasting insulin and triglyceride levels.Take a look at this plot:[caption id="attachment_12804" align="aligncenter" width="400"]

trigs_vs_insulin_gb

Plot showing ten pairs of measurements of insulin and triglycerides, made from the same blood samples. They were collected between 2011 and 2017, and all are from my own blood tests.[/caption]It shows measurements of insulin concentration on the horizontal axis in mili units per millilitre (mIU/ml), and triglyceride levels on the vertical axis in milligrammes per decilitre (mg/dl). This is a correlation plot in which independent measurements of one variable are plotted against independent measurements of another in an attempt to see if there is a relationship between them.Is there an order in the way the dots are organized? They are clearly not randomly distributed as a circular cloud of dots---it would mean that there is no relationship. Instead, we see what looks like a linear relationship in which lower values of insulin correspond to lower values of triglycerides, and higher values of insulin correspond to higher values of triglycerides. It's not a straight line, but it's definitely a clear linear relationship, and the value of the correlation coefficient, which quantifies how tight the relationship actually is, of just under 0.9 is pretty close to 1. In other words, it's a pretty tight linear relationship.Triglyceride is a fancy word for fat or lipid, because fat molecules are composed of three fatty acids held together by a glycerol structure. This is what triglyceride refers to. The amount of fat in the blood is affected by the amount of fat we eat, and the amount of body fat we have. Naturally, after a fatty meal, triglyceride levels will increase as the fat goes from the digestive system into the blood, they will reach a maximum, and then start to go down. The longer we wait before we eat again, the lower they will go. But there's a few complications.The first is that depending on the amount of insulin, one of whose jobs it is to transport nutrients into cells, whatever is circulating in the blood---and this includes glucose, of course, but also protein and fat---will in general be stored away faster if insulin is higher, and slower if insulin is lower. This means that if you eat fat together with sugar or starch, the whole lot will be packed away, and mostly as fat, minus the little bit of glucose your muscles and liver have room to store up as glycogen.The second is that depending on the state of insulin sensitivity---the fundamental parameter that determines how well or poorly cells can use fat for fuel---triglycerides will in general be used up faster if we are more insulin sensitive and slower if we are more insulin resistant. This means that in the morning, twelve to fourteen hours after having had the exact same meal, the more insulin sensitive person will have lower triglyceride levels than the more insulin resistant.And in fact, no matter if we have a measure of fasting insulin or not, and no matter how little we know about the person's overall health, fasting triglyceride concentration is probably the best general marker of insulin sensitivity. Nevertheless, because their levels fluctuate quite a lot over the course of each day as a function of what we eat and drink, it is true for triglyceride levels as it is true for many other blood tests that are affected by the kind and amount of food and drink we've had over the last days, and most importantly by the amount of sweet or starchy carbohydrates.Now, take a look at this second plot:[caption id="attachment_12805" align="aligncenter" width="400"]

trigs_vs_insulin_final

Plot showing, in addition to the 10 points shown in the first plot (in red), another 20 pairs of measurements of insulin and triglycerides, also all from the same blood samples, but from seven other persons.[/caption]It shows the same 10 data points shown in the first plot from my own results, but with another 20 pairs of measurements taken from other people that I've coached and helped with the interpretation of their results. You can see that the relationship is better defined because of the additional points that now together cover a wider range of values on both axes.However, you can also see that, the relationship is not as tight. In particular, there are a few points that are quite far off the main trend---mostly those at the top of the plot with high triglyceride and low insulin values. We see how these off-trend points affect the tightness of the relationship seen in the initial data set when we compare the values of the correlation coefficients. These off-trend points lead us to the third complication I wanted to bring up.But first, please take a minute to consider the matter: What could lead to having low insulin and at the same time high triglycerides? What could be the cause of the difference between my numbers, which did contain some very low insulin levels, but all of which were paired with equally low triglyceride values, and this other person's numbers? What causes insulin to go down? What happens when insulin is low? What could cause triglycerides to go up while insulin is low?Insulin, no matter how high it is, will start to go down when we stop eating. The longer we fast, the lower it will go. Each person's baseline will be a little different depending mainly on their metabolic health and their body fat stores. The more efficient the metabolism is at using fat for fuel---the more insulin sensitive, the lower insulin will go. But also the lower the body fat stores are, the lower insulin will go. On the flip side, the more insulin resistant and the fatter we are, the longer it will take for insulin to drop and the higher it will stay at baseline.This is pretty shitty. I mean, as we develop insulin resistance, average insulin levels will become higher and higher. As a result we'll store calories into our growing fat cells more and more easily, and will therefore become fatter and fatter, faster and faster. But fat cells also secrete insulin! So, the more fat cells there are, the higher the insulin levels will be, and the harder it will be to lower our basal insulin. To burn fat, we need to lower insulin levels. The fatter we are, the higher the insulin levels will tend to be. And the fatter we are, the harder it will be to lower insulin levels.It's a bit of a catch, but in the end, it's not such a big deal because basically everyone who is overweight and who starts to fast and restrict carbohydrates melts their fat stores away very well. It works incrementally: insulin goes down a little, insulin resistance is reduced a little, fat-burning starts; insulin goes down a little lower, insulin resistance is further reduced, fat-burning increases; and on it goes, until we have lost all those extra kilos of fat that we were carrying on our body, be it 5, 15, 20, 35, 60 or even 100 kg of fat! It's just a matter of time.Now, after this little tangent on insulin and fat stores, we can come back to those anomalous points in the plot, the most conspicuous of which is the one just below 120 mg/dl of triglycerides but only 3 mUI/ml of insulin. Have you come up with an explanation? Here is mine:That point is from one of my wife's blood tests. It is unusual because it was done after 24 hours of fasting. My 24-hour fasting blood test done a number of weeks before, and my numbers were 41 for trigs at 2.3 for insulin. The difference between her and I was that I was already very lean, whereas she wasn't. Therefore, as she fasted, her insulin levels dropped very low, and then the body started releasing its fat stores into the bloodstream in high gear. This is why her triglyceride levels were this high while her insulin was that low. It's almost certainly the same for the other two points up there with trigs at 110 and 90 with insulin around 4 and 2.5 (the latter one of which is also my wife's).Since we did many of our blood tests around the same time, there are 9 data points from her on the plot. Several are in the centre of the main trend at insulin values between 6 and 7, but I'd like draw your attention to her lowest insulin value that was measured at 1.8, and at which time her trigs were at 57, and her lowest triglyceride level of 48, at which time her insulin was at 2.2. This shows that on average her values are a little further along the trend than mine are because of the small difference in body fat, but that she has good insulin sensitivity, and a well-functioning metabolism that can efficiently use fat for fuel.The other off-trend point, but in the other direction on the right hand side, with insulin just above 10 and trigs around 65, is from my mother's first blood test which I ordered and included insulin and trigs, before I got her off carbs. She was 82 at the time, eating a regular kind of diet, but not a very nutritious or varied diet with plenty of bread and cheese, because she had serious problems moving around and taking care of herself while still living alone. And so, it's just the result of being older, having plenty of carbs, but not being highly insulin resistant nor highly overweight. Her baseline insulin levels were just generally higher because of her age and diet, but her trigs weren't excessively high.However, after just four days of intermittent fasting on a very low carb regime with most calories coming coconut oil spiked green juices and coconut milk smoothies, her insulin went from 10.3 to 4.7, and she lost 5 kilos, which, of course, were mostly from the release of water that the body was retaining to counter the effects of the chronic inflammation that immediately went down with the very-low carb regime and fasting.Later, having sustained this strict green healing protocol for about 6 weeks, her numbers were at 2.9 for insulin and 56 for trigs. And by then she had lost another 5 kg, but this was now mostly fat. She had, at that point, recovered full insulin sensitivity, had lost most of her body fat stores, and overhauled her metabolism. She was 83 at that time, which shows that this sort of resetting of the metabolism can work at any age.On this note, let's conclude with these take-home messages:First, the next time you get a blood test, request that insulin and triglycerides be measured, because it's the only way to know what your fasting insulin actually is, and because it is very telling of your level of insulin resistance or sensitivity, overall metabolic health, as well as your average rate of ageing as we've seen in a previous post on insulin and the genetics of longevity.Second, when you get the results back, you will be able to tell from your triglycerides concentration, in light of your insulin level, either how well the body is using fat for fuel---in the case you are already lean, or how fast you are burning your fat stores---in the case you still have excess body fat to burn through.And third, resetting metabolic health can be done at any time and at any age, and is yet another thing that shows us how incredible our body is---the more we learn generally or individually, the more amazing it reveals itself to be.Thank you to all our patrons, and in particular Eric Peters, for their continued support. Become a proud sponsor of healthfully and join our patrons today!

Read More

Rejecting the lipid hypothesis with a cholesterol of 278 mg/dl and a smile

When it comes to evaluating how likely you are to have a heart attack, the most accurate diagnostic---the gold standard---is the calcium score. The reason why it's the most accurate is because it's calculated from an actual 3D image of the heart and the blood vessels around it. A computerised tomography (CT) scan is done, and from it the amount of plaque buildup in all the places where it appears because of the high density of the calcium it contains is measured and summed to give the total calcium score.[caption id="attachment_12785" align="alignnone" width="881"]

3d_image_of_my_heart

3D volume rendering of my heart seen from the top.[/caption]Even though it has been estimated that approximately half of heart attacks are caused by non-calcified lesions, this is the closest thing we have to a direct measurement of the amount of plaque in the network of arteries around the heart. From doing this to thousands of people, we know that plaque usually begins to accumulate after the age of 35. Why isn't the calcium score test done systematically on everyone above 40 in order to assess their immediate risk, but also to track their individual cardiovascular evolution, showing, with a reliable reference each year, how quickly or slowly arterial plaque is growing? Because it's too expensive. Therefore, it's only prescribed to people who are deemed to be at high risk based on other so-called "risk factors". You know the list: overweight, sedentary, smoking, stressed, etc. But the clincher in this list of risk factors, the one factor that has pretty much eclipsed all the other ones, at least for the past few decades, is high cholesterol.The focus on cholesterol was, over time, shifted to LDL, the "bad" cholesterol, and later on the ratio between it and HDL, the "good" cholesterol, terms introduced by the pharmaceutical industry to convince us that there is a battle between a good guy and a villain that must be stopped, which they can help with by providing us cholesterol lowering statins, even if with each passing year, the evidence exonerating cholesterol and lipoproteins from any wrong-doing in the genesis and progression of cardiovascular disease has been accumulating. Still, for people and for doctors, it's really hard to overcome the several decades of conditioning we've suffered holding cholesterol as the main culprit for heart disease.Fortunately, this knowledge and information have been shared and available for as long as the first experiments that set us on this damning direction in thinking and mindset. For my part, I first read a clear expose on the function of cholesterol and lipoproteins from Ron Rosedale over 10 years ago. Then I read it from Uffe Ravnskov, then from Anthony Colpo, then from Malcolm Kendrick who has and to this day continues to investigate the topic and share his findings on his blog, and then from Gary Taubes. All of this has taught me that cholesterol, HDL, and LDL, are not only not dangerous, but that they are essential and crucial for optimal health. This, I shared with you in But what about cholesterol? and shaped my diet to maintain healthy levels: I restricted carbohydrates and polyunsaturated oils, and have gotten most of my calories from minimally processed saturated fats from grass fed animals fats, coconut oil, butter, and olive oil. In this endeavour to maintain strong cholesterol and lipoprotein levels, as you can see below, I have succeeded.The following plot shows all the measurements of total cholesterol I have ever gotten made from blood tests over the past decade. What you can see is that in late 2007---a time before which I ate mostly complex carbohydrates and polyunsaturated seed oils while avoiding animal and saturated fats---my total cholesterol was below 150 mg/dl. Since then, it has been generally around or above 200 mg/dl with a slight upward trend over the years.[caption id="attachment_12782" align="aligncenter" width="1947"]

ts_total

My own total cholesterol levels in mg/dl measured from late 2007 to mid 2018.[/caption]If we look at the concentration of low and high density lipoproteins LDL and HDL, we also see consistently high levels, with LDL typically 10-30 mg/dl higher than HDL levels. Unsurprisingly, the same general shape and trend are is seen in these measurements as are seen in those of the total cholesterol.[caption id="attachment_12784" align="alignnone" width="1947"]

ts_hdl_ldl

My own LDL and HDL levels in mg/dl measured from late 2007 to mid 2018.[/caption]Many of you have been reading this blog for a while, and I trust that you have therefore also known for a while that cholesterol is good for you, and that we should strive to have robust levels of HDL, LDL, and total cholesterol. Whether you have managed to overcome the conditioning we have all been subject to over our lifetimes about the purported but never-substantiated dangers of cholesterol and saturated fats, I cannot know. But I hope that I have at least helped a little in that respect.In any case, I have for several years, every since I first read about the calcium score, wanted to get this test done, and see where I actually stood on the arterial calcification scale. I've never had fears or apprehension about it because even when I first read about it, I felt that I had a pretty good idea of the process by which cardiovascular disease evolved, and was following a regime that I knew would minimise the likelihood of atherosclerosis. But still, there is a big difference between having confidence that something is the case, and actually knowing that it is by seeing observational, quantitative, measured evidence for it. Finally, this spring, I was able to get a calcium score done.I was very lucky to be referred to a young (45), well-informed, and open-minded cardiologist who also does research and has led trials on a group of several thousands of people who work at the Santander Bank campus near Madrid. He also happens to be the head of the cardiology imaging unit of the Clinical Hospital San Carlos in Madrid, a post he has held for more than 6 years now. So, he's not just any cardiologist: he's one of the best, and most importantly, one of the very best in cardiology imaging, which was exactly the purpose of consulting with him in the first place. I could not have been in better hands.On our first appointment, after the initial conversation and questions regarding medical and health history, his assistant helped do an ECG, which looked "perfectly normal", he said. Then he did the ultrasound with Doppler imaging that allows to see the heart pumping and the blood flowing with a colour coding of red and blue for the blood flowing away and towards the probe. To the trained eye of the imaging cardiologist, the Doppler ultrasound shows how the heart moves, how the cross-sections of the arteries pulsate with the heart beats, how the valves open and close, how flexible the tissues are, and how impeded or unimpeded the flow is. After a thorough examination, from one side and then from the other, he said everything looked very good.At the end of the appointment he wrote a prescription for the CT scan to be able to get my calcium score, and another for a set of blood tests to which he willingly allowed me to request any additional one I wanted to have done. Before leaving the clinic, the assistant was able to arrange to have the blood test and the scan on the same day one week later: the blood test would be done in house first thing in the morning, and the scan would be done afterwards at the best medical imaging facility in the city.The day before the scan, I read up on the test, how it's done, how the measurements are made, and what the score means. I found out that, first, that the measuring of the amount of plaque buildup was done by eye, meaning that the experience and know-how of the cardiologist doing it was quite important. Second, I found out that the scale was not normalised like a scale from 1 to 10 or 0 to 100; that it was from 0 to whatever, which could be 400, 1000 or 4000. Although I was surprised and a little disappointed at first---we all love to get a score that can be immediately compared to everyone else's, and gives us a sense of where we stand with respect to the rest of the population---I quickly realised that this made good sense given that it is not a relative but instead an absolute measure of plaque buildup in the arteries: naturally, this can go from no plaque to a little bit, to a lot, and to a ton of plaque. One could imagine estimating a maximum amount---say the amount needed to completely fill up the arteries---and use that as the normalising factor representative of 100%, and expressing every other result with respect to this. For now, this hasn't been done, and the guidelines for interpreting your calcium score suggest values as follows:

  • 0 --- No identifiable plaque. Risk: Very low, generally less than 5 percent.
  • 1 - 10 --- Minimal identifiable plaque. Risk: Very unlikely, less than 10 percent.
  • 11 - 100 --- Definite, at least mild atherosclerotic plaque. Risk: Mild or minimal coronary narrowing likely.
  • 101 - 400 --- Definite, at least moderate atherosclerotic plaque. Risk: Mild coronary artery disease highly likely, significant narrowings possible.
  • 401 or Higher --- Extensive atherosclerotic plaque. Risk: High likelihood of at least one significant coronary narrowing.

I got the blood test results back before the calcium score: everything looked good. Because most of my blood markers have been stable for years, especially the metabolic markers related to glucose and fat metabolism, the ones I am most interested in are those I need to monitor: things like B12, folate, homocysteine, and D, all of which need to be controlled and their levels adjusted with supplements; those that show my hormonal status, especially for the thyroid and sex hormones; and finally the markers of systemic inflammation which should always be as low as possible. The cholesterol panel is the one that for me has the least importance. But we are here considering cholesterol and lipoproteins in relation to cardiovascular risk assessed by means of the calcium score. So, these were the measured values: total cholesterol was 278 mg/dl, HDL was 122 mg/dl, LDL was 145 mg/dl, VLDL was 11 mg/dl (ref: <40), lipoprotein(a) was 4.40 mg/dl (ref: <30), and the ratios of total/HDL and LDL/HDL labelled atherogenesis indices were 2.28 (ref: <4.5) and 1.19 (ref: <3.55), values which are all deemed very good, of course.A few days later I got my calcium score back. What do you think it was? You know I'm currently 45 and that calcification begins to grow after the age of 30-35, and has definitely progressed by the age of 40. You also know that---from what we are told by most doctors and health authorities---that plaque buildup and calcification is an inevitable part of ageing, that no matter what we do or eat or not eat, even if we might be able do things to slow it down, plaque accumulates and calcification progresses in only one direction: upward and onward. With this in mind, what would you guess my calcium score was?My calcium score---based on 3D imaging of the heart and the region around it, and calculated by the one of best imaging cardiologist in Spain---was 0. It wasn't 10 or 20. It wasn't even 1, or 2, or 3. It was zero.In our scientific training we learn that theories can never be proven---that they can only be disproven, and that hypotheses can never of accepted---that they can only be rejected. We also learn that to disprove or reject a theory or hypothesis, what is needed is a single contradicting piece of evidence, a single contradicting observation. The lipid hypothesis---that elevated blood cholesterol leads to atherosclerosis of the arteries, and that therefore decreasing blood cholesterol concentration significantly reduces cardiovascular risk---has been ingrained into our psyche more solidly than almost anything else that we collectively believe. But faced with this evidence, even if it is from one person only, of having maintained "elevated" fasting cholesterol levels consistently for a decade while in spite of this having gotten a perfect calcium score at the age of 45, the hypothesis must surely be rejected.Even if we didn't have any other evidence at all, according to the scientific principle that one contradicting piece of evidence is sufficient to reject a hypothesis, this single instance of my history of high total cholesterol together with a calcium score of zero is enough to reject the hypothesis that having elevated blood cholesterol levels over a long time leads to atherosclerosis and therefore to cardiovascular disease.And we can be sure I'm not the only one. In fact, I'm willing to bet anything that most people in the low carb community who have been low carbers for as long as I have will have high cholesterol levels and low calcium scores. But still, to change the mindset of several generations of doctors, journalists, and people everywhere---hundreds of millions of educated people conditioned from decades of misinformation---will take years, probably decades. That's how we are as social animals: stubborn in our beliefs.In any case, I hope you, at least are, if you weren't already, are now convinced that having high cholesterol does not cause atherosclerosis. Are you now curious to find out what your calcium score is? If you do get it done, please share.For my part, I feel even more confident than I did. Even if I assured you more than five years ago in the spring of 2013 in At the heart of heart disease that you could be entirely free from cardiovascular disease by following some basic guidelines I listed regarding our eating, drinking, and living habits, there is nothing like observational evidence. And now we have it.Thank you to all our patrons, and in particular Eric Peters, for their continued support. Become a proud sponsor of healthfully and join our patrons today!

Read More

Case study: B12 deficiency, rapid weight loss, protein in the urine, osteoarthritis, elevated vitamin D

Just last week, a friend of mine wrote me this:

My mom has not been well. Not eating well, massive head ache, lost a lot of weight. Blood test results yesterday showed that she's B12 deficient; urine, however, has too much protein. Any idea why?

I suppose, since he asked me, it most likely meant her MD didn't offer an explanation for the test results. One this is sure, neither she nor he knew what to do. My feeling is that he asked just in case I knew anything that could help. And I did. So, I did.Let's go through the analysis together:

case_study_analysis

Is it normal to have protein in the urine? What is supposed to be excreted in the urine? What organ regulates what goes and what doesn't go into the urine? Under what circumstances would protein end up in the urine?From a biological standpoint protein is precious. From an evolutionary standpoint protein is hard to come by and hence relatively rare. Therefore, the body has evolved to use and keep as much protein as it can. The urine is intended to excrete uric acid, which is the main acid produced by metabolic processes. Urine is excreted through the urethra, it is stored in the bladder, and it is produced by the kidneys, which filter the acids out of the blood. The kidneys try to prevent large molecules like amino acids and glucose from going through into the urine. The solids in the blood are separated from the water, the acid is filtered out of it, and depending on the state of hydration, more or less water is used to make urine or returned back to the blood. The only circumstances under which protein would end up in the urine are 1) that the kidneys are not working properly, and unable to filter the protein out of the blood, 2) that there is a serious excess of protein in the blood, or 3) that there is both kidney dysfunction and excess amino acids in the blood. We've explored kidney function in great detail before in The kidney: evolutionary marvel, and this understanding comes from there.This means we already know that his mom either has kidney disease, that there is too much protein in the blood, or both. But he wrote that she had lost a lot of weight. Losing weight can be due to fat loss, muscle loss, or both. Usually, very rapid weight loss in the elderly is not voluntary, and almost always means rapid loss of fat and muscle. Therefore, for sure, the protein in the urine was the result of a the fast weight loss with rapid breakdown of muscle tissue.But why? Why would she all of a sudden start losing weight so fast? What could have happened or triggered this?Well, he also wrote that she was found to be B12 deficient. And if this was recognized by the conventional MD who ordered the tests, you can be sure B12 levels were very low: surely below 200 pg/ml.Do we become B12 deficient all of a sudden? Or do B12 levels decrease slowly and gradually over the years? Can we even become B12 deficient all of a sudden? Why do we become B12 deficient in the first place? And why is B12 important and relevant in this case?It is possible to become B12 deficient all of a sudden. This happens when our levels are marginally acceptable to start, and we receive a large dose of an anesthetic, before a surgery, for example. Anaesthetic drugs deplete B12; and the larger the dose, the more severe the depletion. But this is certainly not the majority of cases.Most of the time, B12 levels decrease slowly and gradually over the years, either from inadequate intake, or from compromised digestion. In the younger population, it is usually from inadequate intake---as is the case for vegans and vegetarians. In older adults, it is usually from compromised digestion---as is the case from the middle aged to the elderly, generally from a damaged gut and stomach cells that do not produce enough hydrochloric acid needed to break down the protein we eat.As some of you will remember, we've also explored the importance and functions of vitamin B12 in B12: your life depends on it and more recently in Case Study: Homocysteine, B12, and folate. Vitamin B12 is most important for its role in the nervous system: for healthy nerves and proper brain function. But it is also an important anabolic nutrient essential in building and preserving muscle tissue. Bodybuilders everywhere have been taking B12 supplements for at least 4 decades, exactly because it's a potent natural anabolic.Therefore, here is where our analysis leads us:The most probable explanation is that his mother has been growing more and more deficient over the years, a B12 deficiency developed over several decades that just recently reached critically low levels. This triggered rapid weight loss that caused both the loss of body fat stores and the breakdown of muscle tissue. The fat loss released streams of toxins that have been accumulating in the fat cells over years and years, and which caused the massive head aches from which she was complaining. The muscle loss, the rapid breakdown of muscle tissue due to the extreme B12 deficiency, caused the kidneys to be overwhelmed and become unable to keep all these amino acids in circulation, and the protein therefore spilled into the urine.My recommendation: B12 shots of 1 mg once a week for 10 weeks, and then of 5 mg once a month for the rest of her life.The story doesn't end here. It turns out that she has osteoarthritis and she's in pain. Some time ago some friends of hers recommended taking vitamin D supplements, and so she did. When she got her blood test done, her 25-OH-D was through the roof at 127 ng/ml. If you've read our last post on vitamin K2 you will know that this is possibly the worst thing that someone with arthritis can do: high levels of D without correspondingly high levels of K2 will accelerate soft tissue calcification. And since osteoarthritis is a disease of calcification, it will make everything much worse than it already is. Naturally, I immediately recommend she stop taking vitamin D and start taking large doses of vitamin K2 as soon as possible, before something more serious like a stroke or a heart attack happens.He sent me the blood tests, which I examined to get a better picture. Interestingly, few markers were out of the reference ranges. This is probably why nobody said anything other than to point out the obvious abnormalities: low B12, high D, and protein in the urine.But in addition, what could be seen was that both urea and creatinine were near the top of their range, which is expected from rapid weight (muscle) loss, and the eGFR (the estimated glomerular filtration rate) was at the low end of the reference range, which is expected from compromised kidney function given the protein in the urine. C-reactive protein was high but not super high. This signals system inflammation, and is naturally excepted for someone with arthritis, as we also have seen together in the past (https://healthfully.net/category/arthritis/). Lastly, calcium was also high, but nevertheless within the reference range, something we would expected for someone with high D and not enough K2.I asked if she was taking medications, and she was. Several different drugs among which were a statin drug to lower cholesterol, a malaria drug used to treat symptoms of arthritis, and a couple of high blood pressure drugs one that is a diuretic and forces the kidneys to excrete more water, and the other that is an angiotensin antagonist that blocks the hormone which tells the kidneys to retain water when hydration is inadequate. I replayed my view that drugs typically always attempt to block some pathway, and prevent the body from doing something that it naturally does to protect itself. And in this case, she should wean herself off all of these over a few weeks.I also explained that one of the most serious side effects of statin drugs is that they cause muscle wasting, promoting muscle tissue breakdown. Statins do this in everyone, but in the elderly who already have accelerated muscle breakdown, it can be very serious.My final recommendations, beside coming off the various drugs gradually to avoid a shock to the body, were as simple as possible for an old woman to follow: high dose B12 shots, high dose K2 pills, and high dose Mg as L-threonate, plenty of water and salt each day, a low carb diet rich in animal fats and green veggies, and sodium bicarbonate in water first thing in the morning on an empty stomach. We'll see what happens.Blood tests can be used very effectively as a window onto the inner environment of the body. MDs tend to only pay attention to the markers outside the reference range that appear in bold on the print outs. But the reference range is derived from the blood tests of the whole population, and the population is far from being optimally healthy, that's for sure. What we need are not reference ranges derived from a sickly population, but an understanding of how the body works, what its organs and systems are trying to do, and with that understanding, of what our blood markers should be ... ideally. What they should be in the best possible case.That's what we have to aim for. And that's what we have to learn to do, because we certainly can't rely on your average MD to help us in this. If you are an MD, and you are reading this, you already know that you are not your average MD, and I'm pretty confident you also know that your patients are lucky to have you.Thank you to all our patrons, and in particular Eric Peters, for their continued support. Become a proud sponsor of healthfully and join our patrons today!

Read More

Reversing calcification and the miracle of vitamin K2

Vitamin K2 is the only known substance that can stop and reverse soft tissue calcification.If you didn't stop at the end of that sentence to say Wow to yourself, you should keep reading.Soft tissue calcification is one of the most serious health problems we face as individuals, as modern societies, and, on a global scale, as a species. Cardiovascular disease---which leads to heart attacks and strokes, and accounts for nearly half of all deaths in industrialised countries---is a disease of soft tissue calcification: the calcification of our arteries.Arthritis, of which basically everyone past the age of 40 suffers, and increasingly more with time and with age, is a disease of soft tissue calcification. It is caused by the calcification of the cartilage in the joints: the joints of the knees, but also of the shoulders; the joints of the hips, but also of the wrists; the joints of the elbows, but also of the feet and the toes; the cartilage between the vertebrae of the neck and the spine all the way down the back, but also of the hands and of the fingers.Soft tissue calcification also causes kidney stones and kidney disease. How many people above the age of 60 don't have kidney problems? Hardly any. And how many young men and women in their 20s and 30s already have kidney stones and kidney dysfunction? More and more every year.Every one of the processes generally associated with ageing, from heart disease and stroke, to Alzheimer's and dementia, to arthritis and kidney disease, to stiffness in the joints and muscles, but also to the wrinkling of the skin, is intimately linked to soft tissue calcification.And now, let me repeat the sentence with which we opened: Vitamin K2 is the only known substance that can stop and reverse soft tissue calcification. It is really remarkable.Maybe you didn't know about calcification. And so, maybe you are wondering why it is such a major and widespread problem, why it affects everyone no matter where we are or what we do. It's a good question. But because we know that only vitamin K2 can prevent this from happening, we already have our answer: soft tissue calcification is a major and widespread problem because our intake of vitamin K2 is inadequate to provide protection from calcification.Naturally, the next question is why? Why is our intake of vitamin K2 so inadequate? If it is such a crucial essential nutrient, we would surely not be here as a species if intake had always been so inadequate. Looking at things the other way around, if we are so dependent on adequate K2 intake for staying healthy, this must necessarily mean that we evolved having plenty of it in our food supply. What's so different now?To answer this question with some level of detail---meaning with an explanation more extensive than just saying that it's industrialisation that stripped our food supply of vitamin K2 as it has for all the essential nutrients to a greater or lesser extent---we have to understand what K2 is, how it's made, and where it's found in food.The short answer is that K2 is found in the fat of pastured animals that graze on fresh green grass, and produced from vitamin K1 by certain kinds of bacteria in their gut.The longer answer is that vitamin K2 is a family of compounds called menaquinones, ranging from MK-4 to MK-13 depending on their molecular structure. These compounds are derived from the plant analog, the sister compound, vitamin K1, called phylloquinone, and found in chlorophyll-rich plant foods. Phylloquinone is consumed by the pastured animal, it makes its way into their intestines, and there it is transformed by the bacteria of the animal's intestinal flora. The resulting menaquinone is then stored in the fat cells of the animal as well as in the fat of their milk if they are milk-producing. Consuming these animal fats in which vitamin K2 has been concentrated will provide this precious essential micronutrient.If the grazing animal does not feed on green grass, they get no vitamin K1. If they get no vitamin K1, their gut flora is not only compromised and negatively altered with respect to what it should be if they were consuming the grass they have evolved eating, but it produces no vitamin K2. If their gut flora produces no vitamin K2, their fat and milk will contain no vitamin K2, and neither their offspring nor any person consuming products derived from the animal will get any vitamin K2. Hence, no grass feeding, no vitamin K2 in the animal's fat.[caption id="attachment_12684" align="alignnone" width="1350"]

international_dairy_week_banner

It is most natural that grass-eating animals should be grazing on fresh green grass in open pastures. And yet, it is rather rare. But without green grass, there is no vitamin K1. And without vitamin K1 there can be no vitamin K2.[/caption]Maybe you've already thought ahead, and wondered since it is bacteria that produces vitamin K2 from vitamin K1 in the guts of grazing animals, can't we make vitamin K2 without the need for grass-fed animals to do it for us? Yes, it is possible. Fermented vegetables and dairy products like cheese can also contain vitamin K2. In fact, in the case of cheese, there is a lot more in the finished hard cheese than in the milk used to make it. The amount varies widely because it depends on the kind of bacteria. For dairy products, hard cheeses like Gouda have the most, and for plant foods, even if fermented veggies have a little, the Japanese fermented soybean snack natto is the ultimate source of K2.As we all know, pastured meat and dairy is not easy to come by in our modern world. It's actually quite hard to find. Our supermarkets and food stores are flooded with industrially produced meat and dairy from animals that have never seen a blade of grass---grass-grazing animals living their entire lives indoors, in stalls, fed and fattened exclusively on grains, corn, and soybeans. This is how we have stripped our food supply of vitamin K2, and this is why is this a modern phenomenon---most of our grand-parents were still eating pastured meats and animal foods.And if this wasn't enough of a blow to vitamin K2 status, trans-fats, which are formed when vegetable oils are hydrogenated to be made saturated and stable (for long shelf life), and which most of us consume in great quantities, contain a K2 analog called DHP (dihydrophylloquinone) that displaces the little K2 that might has found its way into our diet.It is for all these reasons that soft tissue calcification is so widespread. And you have at this point what you need to know in order to first stop the process by which your soft tissues are getting increasingly calcified, and then, in time, to remove the accumulated calcium from these tissues. It's simple: healthy grass-fed animals produce yellow butter, yellow yolks, and yellowish fat; you need to eat plenty of pastured animal foods, making sure you eat the fat in which vitamin K2 is concentrated, and, to be sure you have enough to reverse the already present calcification, take K2 supplements. And this might be enough for you.If it is, you can head to your browser to find and order some K2 supplements (I currently get mine, it's a 500 mcg per tablet, from Phoenix Nutrition). Also, we need to know that the two main forms of K2 are MK-4 (with four double bonds) and MK-7 (with seven). The first is the one generally found in animal fats that haven't been fermented, while the second is the product of bacterial fermentation. Hence, meat and butter contain mostly MK-4, whereas natto, sauerkraut, and cheese contain mostly MK-7.There is an important difference between these two forms of K2 in terms of their effects inside the body which has to do with their half-life, not in the sense of radioactivity, but in the sense of duration of biological activity in the body. MK-4 will be in circulation at therapeutic doses for a number of hours, while MK-7 remains in circulation between 24 and 48 hours. Therefore, to be safe, we need to eat grass fed meat and butter, and take MK-7 supplements (I take 1000 mcg), always after a meal with plenty of fat to maximize absorption.If you are curious to find out more, if you want to know how menaquinone does this, how vitamin K2 does its miracles inside the body, then we need to take a closer look at the biochemistry of calcium metabolism.

There are three proteins found in bone matrix that undergo gamma-carboxylation via Vitamin K-dependent enzymes: matrix-gla-protein (MGP) (Price et al., 1983), osteocalcin (bone gla-protein, BGP) (Price et al., 1976), both of which are made by bone cells, and protein S (made primarily in the liver but also made by osteogenic cells) (Maillard et al., 1992) (Table V). The presence of di-carboxylic glutamyl (gla) residues confers calcium-binding properties to these proteins.MGP is found in many connective tissues and is highly expressed in cartilage. It appears that the physiological role of MGP is to act as an inhibitor of mineral deposition. MGP-deficient mice develop calcification in extraskeletal sites such as in the aorta (Luo et al., 1997). Interestingly, the vascular calcification proceeds via transition of vascular smooth muscle cells into chondrocytes, which subsequently hypertrophy (El-Maadawy et al., 2003). In humans, mutations in MGP have been also been associated with excessive cartilage calcification (Keutel syndrome, OMIM 245150).Whereas MGP is broadly expressed, osteocalcin is somewhat bone specific, although messenger RNA (mRNA) has been found in platelets and megakaryocytes (Thiede et al., 1994). Osteocalcin-deficient mice are reported to have increased bone mineral density compared with normal (Ducy et al., 1996). In human bone, it is concentrated in osteocytes, and its release may be a signal in the bone-turnover cascade (Kasai et al., 1994). Osteocalcin measurements in serum have proved valuable as a marker of bone turnover in metabolic disease states. Interestingly, it has been recently suggested that osteocalcin also acts as a hormone that influences energy metabolism by regulating insulin secretion, beta-cell proliferation, and serum triglyceride (Lee et al., 2007).

These are the first three paragraphs of the chapter Noncollagenous Bone Matrix Proteins in Principles of Bone Biology (3rd ed.) which I found it on the web when I was searching for more info on the biochemical action of menaquinone.And now, here is my simple explanation of how things work:The players are the fat-soluble vitamins A, D, and K2; three special proteins called osteocalcin, matrix gla protein, and protein S; and an enzyme called vitamin K-dependent carboxylase.First, vitamin D makes calcium available by allowing its absorption from the intestines into the bloodstream. This is vital for life and health. You know that severe vitamin D deficiency is extremely dangerous and develops into the disease that deforms bones called rickets. Milder forms of vitamin D deficiency are much harder to detect without a blood test, but can and do lead to a huge spectrum of disorders and health problems. However, without vitamin K2, ample or even just adequate levels of vitamin D will inevitably lead to increased soft tissue calcification.Vitamins A and D make bone-building cells (osteoblasts) and teeth-building cells (odontoblasts) produce osteocalcin (also known as bone gla protein or BGP) and matrix gla protein (or MGP). This is key because it is these proteins that will transport the calcium.Vitamin K2, through the action of the vitamin K-dependent carboxylase enzyme, activates bone and matrix gla proteins by changing their molecular structure which then allows them to bind and transport calcium.Once activated, bone gla protein brings calcium (and other minerals) into the bones; and matrix gla protein takes calcium out of the soft tissues like smooth muscle cells of arteries, but also organs, cartilage, skeletal muscles, and skin. Without this K2-dependent activation, BGP and MGP remain inactive, and the calcium accumulates in soft tissues all over the body.What completes the act, is that vitamin K2 activates protein S which oversees and helps the immune system clear out the stuff of arterial plaques that remains once the calcium making the plaques structurally stable has been taken out. And, amazingly, protein S does this without triggering a large inflammatory response.Even though it is quite straight forward when explained in this way, this understanding of vitamin K2 and its action in the body is really quite recent: in the last 20 years or so. For one thing, it was only 10 years ago that Chris Masterjohn solved the 60-year old mystery of Weston A. Price's X-Factor, correctly identifying it for the first time as vitamin K2. (You can read that for yourself here.) And although some laboratory studies and experiments on vitamin K were done several decades ago, the majority are from the last 10 years (take a look at the references in Masterjohn's paper.)We'll stop here for now. But we'll come back to vitamin K2 because there are so many other amazing things it does for our health.This article was inspired by Dr. Kate Rheaume-Bleue's book entitled Vitamin K2 and the Calcium Paradox.Thank you to all our patrons, and in particular Eric Peters, for their continued support. Become a proud sponsor of healthfully and join our patrons today!

Read More

Ten years of carbohydrate restriction: here's why

It was almost exactly ten years ago, in March 2008, that I read Ron Rosedale's Insulin and Its Metabolic Effects. I now know that this is surely the one thing I've read that has had the most impact on my life. Rosedale's presentation was a total revelation to me: I had never read anything about insulin before, and his explanations of the biochemical and physiological functions and effects of insulin on the body all made perfect sense in and of themselves, but also appealed to my appreciation and reliance on complete explanations that are consistent with the facts we can observe about them. I eliminated insulin-stimulating carbohydrates from my diet overnight. That was that.We were then still vegetarian at home. Hence, the family breakfast, following Mercola's example, became smoothies made of raw, local, pastured eggs with berries and stevia. That lasted quite a while. I always travelled with my hand blender and stevia, brought eggs if it was for short trip, or scouted out places to get good ones when the trip was longer. Throughout a summer trip along the American west coast, I made our raw egg smoothies every day, in hotel rooms and campgrounds.At one point, I discovered coconut oil and coconut milk. The breakfast smoothies evolved to being made of eggs and coconut milk with berries, and eventually only coconut milk, berries and stevia. This period lasted several years until we moved on to cold pressed green juice with coconut milk; it was two thirds juice and one third milk. We also did this for several years until about two years ago when our son left for university, at which point we dropped having breakfast entirely to allow for a daily overnight fasting period of about 16 hours from after dinner to lunchtime.Food intolerance testing in 2014 showed that all three of us were intolerant to eggs; we removed them from our diet. My wife and I had the most and our son the least intolerances; this was not surprising given we were a lot older than him. It also showed my wife and I were intolerant to most dairy products; we removed them from our diet. We were also intolerant to grains: both highly intolerant to wheat, and then I, in addition, somewhat less so to barley, malt, and quinoa---we ate quinoa almost daily for years as our son was growing up. He, although not intolerant to dairy or wheat, was intolerant to almonds, pistachios, and brazil nuts. (Here are my test results, if you're interested.)Imagine: vegetarian for 20 years, with a diet during these two decades from teenage hood to middle adult hood consisting primarily of wheat and grain products, beans, cheese and yogurt, eggs and nuts. Of course, also plenty of sweet fruit, starchy vegetables, and salads, as with is true for most vegetarians. But the bulk, both in volume and in calories, was from grain products, cheese, and eggs. The shocker for me was that the food intolerance test painted the profile of a meat-eater: if you remove grains, dairy, and eggs, what is left is animal flesh, vegetables and fruits.If now, in addition, you remove (most) fruit and starchy vegetables (most of the time) to avoid insulin-stimulating carbohydrates, all that is left is animal flesh and green vegetables. That's just how it is. We also used to eat almonds---the richest in magnesium, and brazil nuts---the richest in selenium, almost daily. But because our son was intolerant to both and I was intolerant to brazil nuts, we removed those from our diet as well.

IMG_2275

These were all food intolerances; they were not allergies. But they were nonetheless intolerances, some stronger, some weaker. If you are concerned about health in the sense of being in the best state of health you can, then obviously you must not eat foods to which you are intolerant. Otherwise, your immune system is triggered each time the offending molecules in those foods enter the gut and bloodstream. This gradually but inevitably makes the intolerance greater, your system weaker, and body sicker.Over these ten years, I've read quite a few books, articles, blog posts, and detailed discussions about health-related matters. I've also experimented quite a bit with my own diet, and learned a great deal from that. The other thing I've done a lot of, is have conversations with people about diet, nutrition, diseases, and the metabolic effects of different foods and of insulin.My position---which has only grown stronger with time---is that the first and most fundamental pillar of optimal health is having a metabolism that runs on fat. And this means keeping insulin levels low by restricting sugars and starches. Not necessarily always, but most of the time, as in almost always.The first question that people ask when they find out is why: Why do you not eat bread? Bread has forever been essential to humans. I simply couldn't live without bread. Or, why don't you eat potatoes, or rice, or pasta? They're so good! I simply couldn't live without potatoes and pasta. And, you don't even eat fruit? But isn't fruit full of vitamins and minerals?The way I have answered has depended on a lot of things: the setting, the atmosphere, the company, the time available, but most importantly on the person. Some people are actually interested to find out, and maybe even learn something. Most, however, are not. Consequently, I have made the answer shorter and shorter over the years. Now, I even sometimes say: well, just because, and smile.Maybe you have wondered, or even still wonder why. Maybe although you've read so many times in my writings that I think everyone seeking to improve their health should restrict insulin-stimulating carbohydrates, you still wonder what the main reason is, what the most fundamental reason for which I don't eat sugars and starches. Here's why:It's not primarily because carbs and insulin make us fat by promoting storage and preventing the release of energy from the ever larger reserves of fat in our body: I am lean and always have been.It's not primarily because carbs and insulin lead to insulin resistance, metabolic syndrome, and diabetes; inflammation, dyslipidemia, water retention, and high blood pressure; kidney dysfunction, pancreatic dysfunction, and liver dysfunction: my fasting glucose, insulin, and triglycerides have been around 85 mg, 3 milli units, and 40 mg per dl for years; my blood pressure is 110/70 mg Hg, glomerular filtration rate is high, and all pancreatic and liver markers are optimal.It's not primarily because carbs and insulin promote cancer growth since cancer cells fuel their activity and rapid reproduction by developing some 10 times the number of insulin receptors as normal cells to capture all the glucose they can, fermenting it without oxygen to produce a little energy and tons of lactic acid, further acidifying the anaerobic environment in which they thrive. My insulin levels are always low, and my metabolism has been running on fat in a highly oxygenated alkaline environment for a decade.It's not primarily because carbs and insulin promote atherosclerosis, heart disease and stroke by triggering hundreds of inflammatory pathways that compound into chronic inflammation and damage to the blood vessels, which then leads to plaque formation and accumulation, restriction of blood flow, and eventually to heart attack and stroke: my sedimentation rate, interleukin-6, C-reactive protein, and Apolipoprotein-A are all very low.It's not primarily because carbs and insulin promote the deterioration of the brain, dementia, and Alzheimer's, both through the damage to blood vessels around and in the brain itself, and insulin resistance of brain cells, which together lead to restricted blood flow, energy and nutrient deficiency, and accumulation of damaging reactive oxygen species and toxins in the cells, and, unsurprisingly, eventually to dysfunction that just grows in time: because my metabolism runs on fat, this means that my brain runs on ketones, and is therefore free of excessive insulin or glucose exposure.It isn't primarily for any of these reasons, which, I believe, are each sufficient to motivate avoiding sugars and starches in order to keep tissue exposure to glucose and insulin as low as possible.My main reason is that, at the cellular level, in its action on the nucleus and on gene expression, insulin is the primary regulator of the rate of ageing.Insulin is essential for life: without insulin, cells starve and die. It is essential for growth: without insulin cells don't reproduce, and there can be no growth. This is why at that most fundamental level, insulin regulate growth in immature individuals. But in mature individuals, once we have stopped growing, insulin is the primary regulator of the rate of ageing, both in terms of its effect in suppressing the production of antioxidants and cleansing and repair mechanisms within the cell, but also in stimulating cellular reproduction. And the more reproduction cycles, the greater accumulation of DNA transcription defects, the faster the shortening of telomeres, and the faster the ageing.This is a fundamental fact that appears to be true for all living organisms. It is as true for yeasts and worms, as it is for mice and rats, as it is for dogs and humans. And the rate of ageing is the rate of degeneration, of growing dysfunction, of more damage and less repair, of lower metabolic efficiency and less energy, of increased cell death and senescence. I personally wish to be as healthy, energetic, strong, and sharp as possible for as long as possible. This is why I personally avoid sugars and starches. This is why I personally restrict insulin-stimulating carbohydrates.Become a proud sponsor of healthfully! Join our patrons today!

Read More

How much water do you lose during a bath?

Have you ever wondered how much water you sweat out during a bath? Well, I often did. A few years ago, I had a very regular schedule in the morning because my wife and son had to leave early to make it to school in time. I got up early to make the green juice for the three of us, but after they left at 7:30, I had plenty of time before going to work.For a couple months during the winter, I had a bath twice a week. They were therapeutic baths: I was correcting a long-standing whole body magnesium deficiency from decades of intense physical exercise without ever supplementing with Mg, or anything else for that matter. I was curious to know, and so I tried to remember to weigh myself before and after each bath, and write that down. I did it for a while, but I forgot everything about it.A couple of days ago I did a complete cleanup of my closet, and found the little piece of paper on which I had written all the measurements. I thought it would be fun to share that with you.I tried to stick to the same conditions in terms of drinking and peeing, but I wouldn't call it a tightly constrained scientific experiment. I made 15 measurements of my weight before and after soaking in the bath at about 45-47 C for approximately 45 minutes, and calculated the difference:

  1. 59.6 58.9 0.7
  2. 59.5 58.9 0.6
  3. 59.6 58.8 0.8
  4. 60.3 59.8 0.5
  5. 59.6 58.8 0.8
  6. 60.1 59.5 0.6
  7. 59.6 58.9 0.7
  8. 60.0 59.4 0.6
  9. 60.4 59.6 0.8
  10. 59.4 58.9 0.5
  11. 59.9 59.3 0.6
  12. 60.9 60.3 0.6
  13. 60.6 60.1 0.5
  14. 60.6 60.0 0.6
  15. 60.5 59.9 0.6

This is what the distribution of the differences looks like:[caption id="attachment_12658" align="aligncenter" width="422"]

histo-diff

Frequency distribution of difference in body weight before and after bath. (The digital scale had one digit, and assuming the precision on each measurement is half that (0.05 kg), this would make the combined uncertainty on each calculated difference the square root of twice the square of that, and hence 0.07 kg.)[/caption]Given that there are various trends in our weight from day to day that depend on a wide range of factors, only the difference between the weight before and after the baths is important for us here. But because they all have the same uncertainty, it has no effect on the mean, which turns out to be 0.63 (9.5/15); the variance, which turns out to 0.01; and the error on the mean, which turns out to be 0.03. Hence the mean difference in weight before and after is 0.63 +/- 0.03 kg.There would have certainly been variations in the temperature of the water, which could account for the variations in the before and after differences ranging between 0.5 and 0.8 kg. We could say that the hottest baths resulted in a water loss of 800 ml, whereas the more moderate temperatures caused a loss of 500 ml. In any case, as we said, the average of the 15 measurements is 0.63 kg, and this equates to 0.63 litres or 630 ml of water.I think it is reasonable to consider this is in terms of the fraction of water loss with respect to body weight, which for me at the time would have been equivalent to about 1% of body weight. This is probably not precisely the case, but a good guideline to follow: if you weighed 80 kg, you should consider that a 45 minute bath would cause you to lose about 800 ml of water; if you were 100 kg it would cause you to sweat out a full litre.And so, that's it. The answer to the question of how much water we lose during a bath---or actually more specifically, during a bath in which the water is around 45 C, and in which we soak for 45 minutes, and in which we have dissolved1 cup of baking soda and 1 cup of magnesium chloride---is about 1% of our body weight. Very easy to remember.Therefore, ideally, we would be sipping cool alkaline water throughout the bath to make up for that loss and minimize the dehydrating effects of that much sweating.Have you ever done this on your own: weighed yourself before and after a bath to see how much water you lost? If you have, I'd be very curious to know what you found. If you haven't but are intrigued, and want to do it, please go ahead and let us know.Join our patrons today!

Read More

Case Study: Homocysteine, B12, and folate

Homocysteine is an amino acid that occurs in the body as an intermediate in the metabolism of methionine and cysteine. Folic acid is a vitamin of the B complex, found especially in leafy green vegetables, liver and kidney. (Both these definitions are from the New Oxford American Dictionary on my MacBook.) Folic acid is B9, and folate is a salt of folic acid, but the two names are used interchangeably.

Homocysteine is normally broken down and recycled so that it doesn't accumulate. This relies on sufficient amounts of vitamins B12, B6 and B9 being available to facilitate this process. Homocysteine, abbreviated Hcy, is a highly inflammatory substance associated with much higher risks of cardiovascular events. Research (AHJ 2004) has shown that it "causes endothelial dysfunction and damage, accelerates thrombin formation, inhibits native thrombolysis, promotes lipid peroxidation through free radical formation and induces vascular smooth muscle proliferation and monocyte chemotaxis." Naturally, we should strive to keep Hcy levels in our blood as low as naturally possible, which means around 6 micromol per litre. The higher its concentration, the worse off you are in terms of the potential for damage to the arteries and cardiovascular events. For a detailed look at Hcy in relation to vascular disease, read this article by Dr Neville Wilson (thanks Ivor Cummins).Last week I explained something about Hcy, B12, and folate to my son who was getting ready to go back to university for his second year at St-Andrews. Afterwards, I thought it would be useful to share this with you, and I started working on this post.This story is drawn from my own personal history. It is a case study with me as the primary subject using data I have collected from regular blood tests over these last seven years. However, I also use data from both my mother's and my son's blood test results that happen to be critical for understanding my own blood test results. Below, I describe the whole story and analysis of the data in detail. If you are not interested in the details, the punchline is this:If your homocysteine levels are high, you should supplement with B12 and active folate in order to ensure the body has what it needs to process it. Some people lack the enzyme needed to activate the folic acid we get from food. This prevents the body from breaking down homocysteine that consequently accumulates in the blood. This is a genetically transmitted trait, which I think I have inherited and transmitted to my son. Because of it, we must supplement with activated folate to ensure breakdown of Hcy.The first time I read about Hcy was many years in Anthony Colpo's book The Great Cholesterol Con. The subject was discussed towards the end of the book in a short chapter, but I was left with a strong impression. Colpo emphasized that Hcy---unlike cholesterol---was a good predictor for heart disease. And it wasn't just good: it was one of the best. But this wasn't the only reason it made such an impression on me.I read Colpo's book after reading Uffe Ranvnskov's Fat and Cholesterol are Good for You, and Malcom Kendrik's The Great Cholesterol Con, both of which were about fat, cholesterol and heart disease, but neither of which discussed homocysteine. Then I read Gary Taubes's Good Calories, Bad Calories, and again, Hcy wasn't given the share of attention it seemed to deserve based on Colpo's comments. If you're new here, or if you need a refresher, you should read But what about cholesterol? and At the heart of heart disease.The first time I got my Hcy levels checked was on August 27 in 2012. The result was 18.3 micromol per litre. On the results, the reference range was 5 to 15; moderately elevated was 15 to 30; and elevated was indicated as anything greater than 30 micromol per litre. Beside the middle range, it was written vitamin deficiency in parentheses. But it wasn't written what vitamin deficiency would cause elevated Hcy. The doctor from whom I had requested the test didn't know either. (As you might have experienced for yourself, most MDs don't really know much when it comes to blood test results.)I had already started supplementing with B12 by that time. Most of us, as vegetarians, quickly and usually angrily dismiss nutritional advice or warnings of potential problems from deficiencies that non-vegetarians love to offer when they find out we don't eat meat. We usually interpret these as justifications of their feelings of guilt for not being vegetarians themselves. At least I know I did when I was vegetarian. Although most people who do give their unsolicited advice are rarely knowledgeable in the subject matter, I now know that I was dead wrong about my quick dismissal of several things in relation to dangerous deficiencies that come about when we eliminate meat and animal products from our diet. Vitamin B12 is surely the best example.It was after reading this article on B12 by Mercola that I came to realize how disastrous were the consequences of living with low levels of B12, and in my case, how disastrous were the consequences of having been vegetarian for 20 years. I started supplementing right away, and got my first B12 blood test a few months later in 2010 on September 8. The result was 271 pg/ml. According to the lab who did the test, this was within range. But I knew it wasn't. I knew this was much too low, and that I desperately needed to correct this as fast as possible, stop and hopefully reverse the neurological degradation associated with my long-standing B12 deficiency.In that article was also underlined the connection between low B12 and high Hcy levels. It read: Cardiovascular and cerebrovascular diseases have a common risk factor – increased homocysteine levels in blood. Studies show insufficient amounts of folic acid and vitamin B12 can elevate your homocysteine levels, potentially increasing your risk for heart disease and stroke. So, of course I was worried. I was also angry at myself for having been so stupid and stubborn all these years... these 20 long years. But at least I now knew what I had to do: I needed to boost B12 levels and keep them high.And I did. Look at how my B12 levels evolved over 7 years:[caption id="attachment_11973" align="aligncenter" width="1958"]

ts_b12

Blood B12 levels measured over seven years since September 2010.[/caption]Does seeing this make you wonder how the Hcy levels evolved? My expectation was that Hcy would drop as B12 rose. With some time delay of course, but still: as B12 levels increased, homocysteine concentration would decrease. Here is what happened:[caption id="attachment_11998" align="alignnone" width="1958"]

ts_hcy

Blood homocysteine levels measured over five years since August 2012.[/caption]Not so obvious to interpret, right?Let's look at all the tests in which both B12 and Hcy were measured, and plot them one against the other. It's called a correlation plot, and this is what we find:[caption id="attachment_12010" align="aligncenter" width="490"]

hcy_vs_b12

Homocysteine plotted against B12. Data point numbe labels show chronological order of tests.[/caption]So, there clearly is an inverse relationship between levels of Hcy and B12. There is no doubt in this. But at least for me, it's not very tight. The correlation coefficient and the uncertainty on it quantify this relationship.The coefficient can have any value between -1.0 and 1.0: a value of 1.0 signifies perfect correlation; a value of -1.0 signified perfect anti-correlation; and a value of 0 signifies that there is no correlation at all. The uncertainty on the coefficient quantifies how well the coefficient is determined from the data points, and therefore how loosely or tightly they are spread around the overall trend in the data set.A coefficient of -0.66, as we found, tells us that there is indeed an anti-correlation in the relationship between Hcy and B12 concentrations. The uncertainty of 0.22 tells us that the correlation is not so tight. And when we look at two time series above, we see that although B12 has been above 600 pg/ml since 2014, Hcy levels remained more or less flat until the end of 2016.My initial interpretation was that because I had been B12 deficient for basically 20 years, correcting that long-standing deficiency, and repairing the damage caused by it to the body and in particular to the nervous system, required maintaining consistently high levels of B12 for a long time, allowing the body the time needed to repair itself: two decades of B12 deficiency could obviously not be corrected in a few months. Maybe it was only after these 7 years of intensive B12 supplementation that the positive results were beginning to manifest themselves in this way.And by intensive, I mean pretty serious. I started taking oral supplements of 2000 mcg per day; then transitioned to patches which are more effective because the B12 is absorbed directly through the skin without having to go through the digestive system; and finally moved on in early 2015 to monthly intramuscular injections of 5000 mcg of methycobalamin. Nevertheless, Hcy remained pretty much the same, even after months of injections. What was going on? Why wasn't Hcy dropping?Maybe you are thinking that there might be another way we could use to check how much influence B12 levels have on Hcy? Well, I have something I think is quite remarkable to share with you.At the very end of July 2014, I brought my mother to a specialized blood analysis clinic, and ordered the complete set of tests listed on my essential blood test reference sheet. The results came back a few days later: her B12 was at 292 pg/ml; her folic acid was at 11.6 ng/ml; and her Hcy was at 30.5 micromol/l. She was 82 and, just for the record, it was the first time in her life that her B12 and Hcy levels had been measured in a blood test.I immediately got a friend of hers and ex-nurse to give her methylcobalamin injections a couple of times a week. Five weeks later in early September we repeated the test for homocysteine. The result was 9.5!My 82 year old mother's homocysteine levels went from 30.5 to 9.5 micromol/l in 5 weeks following 10 injections of 1 mg doses of methylcobalamin B12.She was out of the red. At least on that front. Hcy of 9.5 micromol/l is still moderately elevated when we consider that we would ideally have it around 6 or so. But 30.5 was dangerously high. This, to my mind, is strongly indicative of the crucial importance and immediate effect of vitamin B12 on homocysteine metabolism.It wasn't a tightly controlled experiment where everything was kept the same except the one variable under investigation, which in this case would have been the B12 injections. It wasn't, because my mother did also at the same time adopt a new dietary regimen, following an alkalizing, very low carb, low protein, high fat, intermittent fasting cleansing protocol I had designed for her, that also included quite a number of other supplements. All were food supplements: vitamins A-D-K2, niacinamide, co-enzyme Q10 as ubiquinol, phospholipids as sunflower lecithin, omega-3s as krill oil, turmeric extract, tulsi extract, chlorella and spirulina, magnesium, zinc, iodine, etc.Certainly it is true that everything influences everything else, but there's no question in my mind that as far as homocysteine was concerned, the most important element in this protocol was the intramuscular injection of methylcobalamin approximately every three days. There is also no question that achieving such a drop in Hcy levels at such an advanced age and in so little time is nothing short of amazing.The point of my retelling of this was to present direct evidence of the strength of the relationship between B12 levels and Hcy concentration. I think it does. Obviously, you are to draw your own conclusions.Coming back to my case, in the fall of 2013, I stumbled upon The Complete Blood Test Blueprint in which Joseph Williams, a knowledgeable, experienced, and kind MD, was interviewed by Kevin Gianni, the host of Renegade Health, in a series of interviews that covered a large number of blood tests in great detail. I learned a lot things listening to Dr Williams. Admittedly, I was disappointed by the lipid panel discussion, and in particular by the discussion of cholesterol and lipoproteins. But putting this aside, I was generally very impressed.Dr Williams talked about B12 deficiency at length, but I was already well versed in the subject by that time. I had recently read the book Could it be B12?, made detailed notes of it, and then posted for you B12: your life depends on it. Dr Williams also talked about Hcy. In that discussion was mention of the fact that in addition to B12 (cobalamin), B6 (pyridoxine) and particularly B9 (folic acid) were also essential for breaking down Hcy. I didn't really think much of it, simply because my diet was and always had been rich in leafy greens, which naturally ensured a high intake of folic acid.A few years and several blood tests later, I listened to the interviews again. And this time, something caught my attention in the part on homocysteine that hadn't the first time: it was mentioned, in passing towards the end of the discussion, that some genetically predisposed people lacked the enzymes needed to activate folic acid; and that these people therefore needed to supplement with the already active form of B9 called tetrahydrofolicacid.It caught my attention because by that time I had several measurements of Hcy that, even with my continued and even intensified B12 supplementation, were not showing evidence of going down. Remember: I started injections in early 2015. But there was something else that made this comment stand out for me: my son's recent blood test results.In July 2016 I brought my son to get a complete blood test that comprised all the markers I usually test for, together with all the major hormones, in order to have a baseline for him in his prime. It is certainly true that we can talk about optimal levels for each of the hormones we know and can test for. But our own personal ideal hormonal profile is unique to us. And the best time to get a baseline is when we are 18 years old: full grown adults at our youngest.Laurent's B12 was 578 pg/ml, his folic acid was 23 ng/ml, and his Hcy was 10.9 micromol/l. At 18, having had no major health issues, no accidents or serious diseases, a remarkably healthful fresh, green, organic, low carb, high fat diet of unprocessed whole foods for most of his life, I thought that this slightly elevated Hcy could be due to one of three things: either his body was still B12 deficient and just slowly building up its B12 stores, even though the three of us had all started with supplementation and patches at the same time; he was one of these people Dr Williams had made reference to who lacked the enzyme to activate folate, and therefore couldn't effectively break down Hcy; or both.I immediately ordered activated folate for us, and we started taking it in August 2016. If you take a look at the second plot that shows my Hcy levels as a function of time, you can see that it was just around 18 micromol/l at the end of July. And half a year later, towards the end of 2016, it was at the lowest it had ever been. Obviously, I was very happy to see this major improvement in achieving a drop in Hcy, something I had been trying to do for so many years. Therefore, also obviously, I continued taking activated folate. As you can see from the next two data points in 2017, Hcy was measured at 10 and then 8 micromol/l. We haven't made another blood test to check Laurent's levels. We'll do that around Christmas at the end of this year when he comes back for the holidays.Can we see how strong the relation between folate and Hcy actually is? We can plot the measurements we have one against the other like we did above for B12 and Hcy. What we find is this:[caption id="attachment_12638" align="aligncenter" width="490"]

hcy_vs_folate

Homocysteine plotted against folate. Data point number labels show chronological order of tests. Arrows mark upper limits.[/caption]The relationship is very clear and linear. But I have to admit that I have cheated your eye a little bit. The measurements of folic acid are capped at 24: any value above that is simply reported as greater than 24. This was the case in tests (4), (8), (9), and (10). I show this with little arrows pointing towards higher values. Because the last three measurements were so close together in time, for the sake of clarity in the plot, I placed them at 25, 26 and 27, inversely proportional to the Hcy level. This is why they appear to follow the line. Otherwise, they would be at on the left edge of the arrows, one on top of the other, aligned with point (4), all at 24 on the x-axis. Note that I also plotted my son's results (labelled as such), adding a data point at (23, 11).What can we conclude from this investigation? Well, it isn't totally clear cut and straight forward. I admit. But let's review the facts:For me:

  • I was 38 years old at the time of my first B12 test.
  • My B12 levels were low for 20 years: 270 pg/ml when first tested after few months of supplementation.
  • My Hcy levels were high at 18 micromol/l about two years after starting B12 supplementation.
  • B12 is necessary to break down Hcy.
  • It took me 3 years of oral and patch B12 supplementation to reach 600 pg/ml.
  • In early 2015 I started monthly B12 injections.
  • Only after almost 2 years of injections did my Hcy levels drop below 10 micromol/l.
  • But this precipitous drop in Hcy was concurrent with the start of supplementation with activated folic acid.

For my mother:

  • She was 82 years old at the time of her first B12 test.
  • Her Hcy levels were very high at 30 micromol/l.
  • Her B12 levels were low for who knows how long: 292 pg/ml when first tested.
  • She received approximately 10 injections of 1 mg in five weeks.
  • Her homocysteine levels dropped from 30 to 9.5 micromol/l.

For my son:

  • He was 18 years old at the time of his first B12 test.
  • His homocysteine levels were moderately high at 11 micromol/l.
  • His B12 levels were 578 pg/ml.

In addition to this, we have the plots above that show inverse relationships both between Hcy and B12, and between Hcy and folic acid. From this, there are at least three very clear conclusions we can draw:

  1. Low levels of B12 are associated with high levels of homocysteine,
  2. Higher levels of B12 are associated with lower levels of homocysteine, and
  3. Raising B12 levels leads to a decrease in homocysteine concentration.

At this stage and with the data we currently have, going further is more speculative. But here is what I think:

  1. I am one of these people that lacks the enzymes to activate folic acid.
  2. I might have inherited this trait from my mother, or much more likely from my dad, considering how well she responded to intensive B12 therapy. This was most likely also transmitted to my son.
  3. I was B12 deficient, and correcting this deficiency didn't lower my Hcy levels.
  4. It was only when I started taking activated folate supplements that Hcy levels dropped quickly and significantly.

The reason I think this comes from two lines of reasoning. The first is that, as I just mentioned, it is only when I started taking activated folate that my Hcy levels dropped below 10 for the first time in seven years since the start of B12 supplementation.The second is that even though both my mother and I were definitely B12 deficient, both probably for a long time, and that this would necessarily have led to an accumulation of Hcy in the blood that would have been greater in her case than in mine due to her age; my son was only 18 years old, and could not have been B12 deficient, at least not for almost 10 years. Nevertheless his Hcy levels were moderately elevated.This is what I told him the other day. It took me only 5 minutes to tell him; it has taken me a lot longer to write this post. But I think the details are important if we are to understand things well. And by this I mean know what we understand, and know what we do not understand; know what conclusions we can make, and know what is hypothesis or speculation.It's not possible to be sure at this stage. We need more data and more experiments. But it's not easy to gather such data, just because it takes a long time and strong commitments to be consistent with a supplementation programme over months and often years. If you have similar data and are willing to share, I would be happy to take a look at them.Data like these trace and reveal so much about what's happening inside our body, below the skin, far deeper than our eyes can see. But we can only begin to understand these measurements and the processes that drive their evolution by spending the time to look at them in detail. This is what we did here together. I hope you found it interesting.Do you know what are your blood levels of homocysteine, B12, and folate? If not, you better get that checked out.Become a proud sponsor of healthfully! Join our patrons today!

Read More

Want to lose weight? Here's what you need to know in under 1000 words

One, you don't want to lose weight: you want to lose fat. You don't want to lose muscle or bone because they are very important functionally and metabolically. What you want to lose is fat. So weight loss needs to be reworded as fat loss.Two, roughly speaking, the body is generally either storing surpluses or using reserves.Three, the major fuels for the body are glucose and fatty acids.Four, for the body to use fat reserves, insulin levels must be low. Fat cannot be efficiently utilized as long as insulin is high, because insulin promotes storage.Five, the thyroid gland regulates metabolism and brain function. It requires adequate amounts of iodine without which it cannot work properly. To ensure healthy metabolic function, iodine supplementation is critical.That's what you need to know. If you want more details, I can expand a bit.

Insulin regulates fat storage

Every second that we are alive, trillions of biochemical reactions take place. The energy currency is adenosine triphosphate, ATP. Mitochondria produce ATP primarily using glucose or fatty acids. Fatty acids produces a lot more, but glucose is much easier to use. Both are used but one always dominates. In general, if there is glucose to be used, fatty acids are not much. For fat loss, we want to promote fat burning for ATP production to fuel cellular activity.High glucose levels from carbohydrate intake trigger insulin secretion. This is necessary to bring the glucose into the cell, and to get rid of it from the bloodstream where it causes damage to the tissues by glycation. Within the cell, glucose can be either fermented without oxygen or oxidised with oxygen. Lower oxygen levels (and very high short term metabolic needs) promote fermentation. Higher oxygen levels (and lower metabolic ATP production rates) favour oxidation. More fermentation leads to greater accumulation of lactic acid, which further decreases oxygen levels. Red blood cells do not have mitochondria and therefore can only produce ATP by fermenting glucose.Lower glucose leads to lower insulin. This triggers the release of fatty acids and glycogen into the bloodstream. If sustained, low glucose leads to the production in the liver of ketones primarily to fuel the brain whose cells can either use glucose, ketones, or medium chain fatty acids because longer molecules cannot pass the blood-brain barrier.The higher the glucose, the higher the insulin, and the faster the uptake and storage of nutrients from the bloodstream into cells. The lower the glucose, the lower the insulin, and the faster the stored fat can be released and used.[caption id="attachment_11582" align="aligncenter" width="474"]

insulinFatStorageFatRelease

Amount of glucose stored as fat and amount of fat released from fat cells as a function of insulin concentration. Plot taken from https://optimisingnutrition.com[/caption]The most metabolically active tissue is muscle. The more muscle we have, the more energy is used, and the faster both glucose and fat are burned to supply fuel to the cells. The more we use our muscles, and the more intensely we use them, the more they grow, and the more efficiently they burn both glucose and fat. Also, the stronger the muscles, the stronger and denser the bones will be. This is very important.Therefore, as we burn more fat, we burn fat more efficiently. As we use our muscles more intensely, we burn more fat. And as we build more and stronger muscle, we burn even more fat even more efficiently, and make the bones stronger.

Different Carbohydrate Intolerance Levels

These mechanisms are universal in animals, but each animal is different, and each person is different. As far as fat loss is concerned, the individuality of people is related to their predispositions to insulin resistance and carbohydrate tolerance, (or actually, intolerance). Every person is differently intolerant to carbohydrates and differently predisposed to insulin resistance.This is why in a group eating the same diet, there are people who are thin, people who are chubby, people who are fat, and everything in between. Basically, the greater the predisposition to insulin resistance (and the more sedentary), the lower the tolerance to carbohydrates will be, and the fatter you will tend to get. In contrast, the lower the predisposition to insulin resistance (and the more active), the higher the tolerance to carbohydrates, and the thinner you will tend to be.This translates into different thresholds in the amount of carbohydrate we can eat without negative metabolic consequences, and consequently, the amount under which we must stay in order to burn fat instead of storing it. As a guideline, if you want to burn primarily fat for your body's energy needs, this threshold would be around 20--25 grams per day if you are fat; around 30--50 gram per day if you are neither fat nor thin, and could be around 80--100 grams per day if you are very thin.But no matter what your personal threshold happens to be, it will always be the case that the lower the intake of carbohydrates, the lower the glucose and insulin will be, and the more efficiently your body will burn fat as fuel.

Fat Loss Rate

The amount of fat that is burned is determined by the energy balance. The greater the total amount of energy we use, the greater the total energy needs. Total energy needs will mostly be met by energy from food intake and energy from fat reserves. If food energy intake is high, the need for stored energy will be low. If intake is lower, the need for energy from fat reserves will be higher.Pushing this to the limit---maximal usage of fat stores---we would provide the protein necessary to maintain muscle and other active tissues and nothing more. In this situation, basically all energy needs would be supplied by stored fat reserves and glycogen when needed. This is greatly enhanced by resistance training.The amount of protein needed is proportional to muscle mass and muscular activity. As a guideline, you can use 1--1.5 grams per kg of lean mass per day in the case of little physical activity, and 2--3 g/kg/d in the case of high muscular activity levels. Excessive protein is not great, but more is almost always better than less.Fat burning and protein synthesis can be further optimised by intermittent fasting. Extending the time between feedings allows glucose and insulin to drop lower, which increases the rate of fat burning. And by eating fewer but larger amounts of protein in a meal is better because protein synthesis increases in proportion to the amount consumed.Thyroid function regulates metabolism. Iodine is used in every cell, but in the thyroid, it is concentrated to more than 100 times the average of other tissues, because iodine is the main structural component of thyroid hormones. Iodine supplementation is critical because most soils are highly depleted. It is water soluble and very safe to supplement with.

Summary

  • High insulin from carbohydrate intake promotes fat storage.
  • Low insulin from restricting carbohydrates promotes fat loss.
  • Individual predispositions determine the threshold of carbohydrate tolerance.
  • Below this threshold fat is used as the main source of cellular fuel.
  • The rate of fat loss depends on balance between energy needs and energy intake.
  • Maximal fat loss rates are achieved by supplying just the protein needed to sustain lean tissues.
  • Iodine supplementation is critical to healthy thyroid, metabolic and brain function.

Join our patrons today!

Read More

A simple 10-step arthritis treatment plan

What are the most important things we can do to stop and reverse the degeneration, and alleviate the stiffness and pain of arthritis? You can be sure that no matter how bad things are, there are many things that will help, and they don't involve pharmaceuticals.We looked in some detail at how to treat arthritis in Treating Arthritis I and II, and have at least one of our readers, an artist, Catherine Bath, who has been able to alleviate a great deal of her stiffness and pain, and recover a good amount of mobility and ease of movement by following the various recommendations we made there and throughout this blog.Here, prompted by a request from a good friend who needs it, we present a simple treatment plan with the most important elements, and just the essential details needed to understand why the interventions are useful, and how to put them into practice right away.[caption id="attachment_11377" align="aligncenter" width="722"]

what-arthritis-pain-feels-like-722x406

Illustration of painful, inflamed, arthritic joints. (Image taken from Everyday Health)[/caption]1. Hydrate and alkaliseThis is the most important point of all. Without it nothing will work, really. Every joint works thanks to the cartilage that allows the bones to move within it without rubbing against one another. Arthritis is always characterised by the degradation of this cartilage and the pain associated with the inflammation caused by the bones not moving properly or rubbing inside the joints. Cartilage is water (85% by weight) held together in a matrix made mostly of collagen, and chronic dehydration is the first cause of cartilage breakdown (details in Your Body's Many Cries for Water).Metabolic acids (mostly uric acid) can only be excreted efficiently by the kidneys when there is an excess of both water in which to dilute the acid, andsalt to help carry it out in the urine. Without excess water, the kidneys will prioritise retaining as much of it as they can. Without excess salt, the uric acid will be recycled instead of being excreted in order to to maintain the concentration gradient in the medulla of the kidney that ensures its ability to reabsorb as much water as possible. Chronic dehydration and avoidance of salt, coupled with the drinking of acidic liquids and eating of acid-forming foods inevitably leads to chronic acidosis.To maintain the pH of the blood at 7.365 in spite of the continuous flow of acids into it from the muscles and digestive system, two main coping strategies are available: 1) The body's main acid buffering mechanism using the reserves of alkalising minerals stored in the bones and teeth to counterbalance the acid load. If you don't quite understand the implication here, this means erosion of the bones and teeth to put into the blood some of the alkalising calcium, phosphate and magnesium as acid-buffering minerals. 2) The crystallisation of the uric acid to pull it out of circulation, but then storing it into tissues, of which the joints, regrettably for arthritis sufferers, seem to be used preferentially, even though all tissues can be used for this to a certain extent.The strategy is simple: drink alkaline water (either naturally so, or made to be with pH drops) on an empty stomach, and allow at least 30 minutes before eating. Aim for 3 litres per day. One litre before each meal, drank over a period of one to two hours, is a simple rule of thumb and easy schedule to remember. And aim for 2 full teaspoons of unrefined salt with your meals.2. Magnesium chloride and sodium bicarbonate bathsMagnesium is at the very top of the list of supplements for anyone in any circumstance. We explored and explained why in Why you should start taking magnesium today.Transdermal magnesium and bicarbonate therapy is the best way to simultaneously replenish magnesium stores in the cells, while alkalising the tissues directly by transdermal absorption of magnesium and sodium bicarbonate. If you have a bath tub, do this once or twice per week, or more if you can or need it. Add two cups of each magnesium chloride and baking soda, and soak for 45 to 60 minutes.I also recommend that in addition to this---but crucially if you don't have a bath---you take magnesium supplements. I take a fat-bound magnesium supplement called L-Threonate. Another alternative is the amino acid-bound supplement called magnesium glycinate (using glycine). Both of these form maximise absorption. Take it with meals.3. Silicic acid, collagen, hyaluronic acid, and proteolytic enzymesAn essential constituent of hair, skin, and cartilage. Absorption is poor and slow. This means you need to take small amounts every day for long periods of time. Every morning, first thing, with your first glass of water. You will need to do this in cycles of three months on, three month off. I take Silicea, a concentrated water-soluble silicic acid gel by the German brand Huebner.Collagen and hyaluronic acid will help greatly in rebuilding the damaged cartilage. Look for type II collagen for better absorption. Now Foods has good products at good prices. Also, glucosamine, chondroitin, MSM have all been shown to be useful for joints.Proteolytic enzymes are responsible for breaking down, building, and repairing tissues. They can be amazing in accelerating a healing process, no matter what it is. Therefore, this is an essential supplement to take in treating arthritis.4. Vitamin D3 and K2These are the two vitamins that control and regulate the availability and deposition of calcium. Vitamin D3 makes it available, and vitamin K2 directs it to the bones and teeth. Lots of vitamin D3 without K2 will lead to calcification with calcium being deposited all over the place in the arteries and soft tissues. Lots of K2 without D3 will lead to a depletion of available calcium in the bloodstream because it will be stored away in the bones and teeth. K2 is also used to decalcify soft tissues by pulling out and redirecting the deposited calcium from the tissues to the bones.Vitamin D deficiency is universal in the west, and so is vitamin K2 deficiency. Arthritis sufferers need large doses of both for extended periods of time (at least a year). I recommend taking a combo supplement containing both in an optimal ratio, and take as many capsules as needed to bring vitamin D intake to 20 000 - 50 000 IU per day with breakfast and lunch. For years I took DaVinci's ADK combo, which I think is one of the best. Now I take Life Extension's D and K combo, without vitamin A, because its presence dampens the activity of vitamin D3. However, vitamin A promotes the healing of tissues. You can take both, alternating between the two.Another of our readers who had his entire adult life an arthritic wrist that caused him pain and trouble whenever he used his hand for anything at all, followed my suggestion of taking 50 000 IU of vitamin D3 per day, together with the appropriate amount of vitamin K2 to match in the D3 intake, for six months. Within the first month, he found incredible improvement, something he had never been able to achieve using all the methods and drugs that had been proposed to him by MDs. After three months, his wrist was completely healed. He continued for the entire 6 months just to be sure, and now, his painful, debilitating, arthritic wrist that he was living with for more than 20 years, is a thing of past, a bad memory.5. Vitamin CWhole food vitamin C is essential for healing and keeping tissues and cells healthy. And there is definitely a difference between whole food C and ascorbic acid. We discussed this in Vitamin C is not vitamin C. This is not specific to arthritis, but everyone with arthritis should be loading up on it. I take The Synergy Company's Pure Radiance C. You should take at least three capsules, but better 6 capsules per day, split evenly with each meal.6. Turmeric extractTurmeric is one of if not the most powerful natural anti-inflammatory. And inflammation is a hallmark of arthritis. You should take an extract that concentrates the curcuminoids, but you should also think of making yourself hot turmeric drinks, adding as much turmeric to your soups and curries as the flavours and combinations of foods will allow. It always needs to be taken with a lot of fat to maximise assimilation.7. FoodNaturally, you will have guessed that my recommendations for food are the same as always, but even more important in this case when we are trying to bring inflammation as low as possible, and maximise healing:

  • no simple or starchy carbs because they cause inflammation, tissue damage, and metabolic disorder, except for berries once in a while;
  • unlimited unprocessed saturated fats from coconut oil, butter, and animal sources;
  • enough high quality protein from healthy animals including organ meats, especially liver; and
  • as many green veggies as you like, especially leafy like spinach, kale and lettuces, watery like cucumbers, fibrous like celery and broccoli.
  • Avocados are fantastic to eat as often as you want. Walnuts and hazelnuts are excellent health-promoting nuts (either roasted, or raw and soaked, subsequently dehydrated or not).

8. Sunshine, fresh Air, exercise and saunaGo out in the sun, go for long hike, expose your skin, breath deeply, run up the hills, work your muscles at the gym if you can, go to Pilates and yoga classes, do lots of stretching whenever you can, and go to the sauna when you can. Make sure you stay 15 minutes to get really hot and for the heat to penetrate into the tissues and joints.9. IodineIodine is the universal medicine. Everyone needs it, and everyone should be supplementing with it. You can read for yourself why in Orthoiodosupplementation. Start at 12.5 mg and work your way up to 50 mg per day. Increment by 12.5 mg each week. Take the supplements on weekdays and give the kidneys a break on weekends. I take Iodoral, and recommend that. Using the generic Lugol's solution is as good but less convenient.10. Melatonin and good sleepGood sleep is absolutely essential for repair and healing. Make sure you get plenty every day. Melatonin has, in addition to its effects in helping you sleep, many other amazingly health-promoting effects that we will explore in another article sometime soon, I hope.Last wordsAre there more supplements you can take? Of course there are. I personally take all of the above and several others. I wanted to stick to the things which I believe most essential. If I were to recommend additional supplements, I would say to take

  • omega-3's, which are useful for lowering inflammation, as well as tissue healing and repair. I take Life Extension's Mega EPA/DHA. Don't take more than the recommended dose. Omega-3's are very easily oxidised, and should always be taken in very small quantities.
  • Niacin in the form of niacinamide is also a universally useful supplement because it provides molecular building blocks needed by every single cell to produce energy. I take 500-1000 mg/day, but you could take 3000 mg (1000 mg with each meal). Niacin supplements will also do wonders for your mood (see No more bipolar disorder?).
  • Ubiquinol, the active form of Co-enzyme Q10, is also essential in cellular energy. I would recommend at least 50 mg per day, but more (like 100 or even 200 mg) would probably be better.
  • Vitamin B12 is crucially important for health. And the older we get, the more critical it becomes. I get an injection of 5 mg every month, and recommend that for everyone (see B12: your life depends on it).

Keep in mind that the timescale for improvements is long: on the scale of months. If you think that is too slow, ask yourself how old you are, and how long it took to get to the state you're in. Now, with the answers in mind, remind yourself to be patient. You need to be determined to get better, consistent with your new regimen, and patient. But I assure you that you will get better. And please, keep me posted on your progress.If you think this article could be useful to others, please Like and Share it.

Read More

Eat your salt, and eat your fat

A couple of months ago, I had just gotten to the locker room at the gym, when a buddy of mine came in. Changing into his workout clothes, looking at himself in the mirror with his shirt off, he said he was tired of this layer of fat over his abs, that he just couldn't get rid of it no matter how much he tried. He's a handsome Columbian guy in his mid thirties, super nice, friendly, and easy going, big open smile with nice white teeth. He's well built, strong, with balanced musculature but ... there's not much definition.Everyone wants to be cut, of course, and when you're working out 5 or 6 times a week, like he does, and you can't get cut, you get frustrated by that. Quite understandable. Meanwhile, I work out typically three times, and I'm "rallado" as he says to me. In english, the term is shredded: so lean that under tension, we see the muscles fibres. In my case, we can see them in every muscle, including the abs. He knew that, obviously, since I've been like this ever since we first met a year and a half ago. The only thing that's changed is that I've put on some muscle and use heavier weights in my workouts.And so, naturally, that was my queue:

- You just need to cut the carbs. The fat is going to melt off on its own in no time. Especially if you are working out the way you do. Just stick to meat and vegetables. Make it simple for yourself. Have eggs and avocados for breakfast, and meat and veggies the rest of the time. If you can skip breakfast, that's even better: you'll give your body a longer time to burn fat.

- Alright! I'll try it!

After our workout, we said goodbye, and he told me he was going to Columbia for a while for his work (he's part of a several-generation, several-family-member meat business based there, but lives here in Madrid with his wife and young child). He said that even though they always serve so rice, pasta, and potatoes with every meal, he would do his best to stick to the plan of having only meat and veggies. I gave him a good handshake, told him he could do it, and that it was important to be strict for the first month to allow for a good transition to fat-burning.A few weeks later, he came back. We bumped into each other at the gym again. I was doing chest and back, he had come to do shoulders. He looked noticeably different: his face was smaller, his features more defined, his neck was thinner and more visible, his eyes were whiter and his skin was smoother. He looked 5 years younger! As soon as I saw him, I told him he looked very good, thinner in the face and neck, younger, and clearly healthier. He was happy to hear me say it, of course. He said that many people had told him that he looked younger, and obviously, he could also see it himself when he looked in the mirror. But it's always nice when someone tells us we look good; it doesn't happen very often. He had already lost 4 kg.We saw each other a few more times at the gym like that, working out, but it took a while before he told me that he was feeling weak, that he couldn't push as much weight as before, that he was often tired, and strangely, often in an angry mood. Naturally, he thought it was because he wasn't eating carbs. That somehow he was carb-deficient.

- Do you add plenty of salt and fat with your meals meat and veggies?

- No! I don't! I haven't added salt to food in years. And I don't add fat either.

- That's the problem. You need to start right away. Lots of salt, and lots of fat with your food, whenever you eat.

- What kind of salt, and what kind of fat?

- Unrefined sea salt, organic butter and coconut oil, and olive oil with salads. With every meal. When you go low carb, you not only get rid of accumulated water in your tissues due to the chronic inflammation triggered by carbohydrate exposure (that's why your face and neck thin out in the first week or two), but you also excrete more salt in the urine. It's crucial to eat plenty of unrefined salt every day.

[caption id="attachment_11064" align="aligncenter" width="1802"]

butterAndSalt

Organic butter and unrefined salt[/caption]Two days later, when I got to the gym, he was already into his workout, and he was pushing heavy weights on the benchpress, he was walking around with a spring in his step, and he was smiling. I didn't even need to ask, but I did anyway:

- So, how are things going? Lots of salt and fat?

- Yes! And I feel great! I feel strong, I feel powerful, I'm not tired, and I'm not angry anymore.

- Fantastic! Glad to hear that. And from now on, you'll always feel like this. No ups and downs, no weakness or lack of energy, no hunger pangs, no mood swings.

Each time we saw each other at the gym in the next weeks, I could tell he was getting more defined. The last time we met, he was again walking around feeling strong and working heavy weights with a smile on his face, and he looked ripped, a lot more defined. And he knew it too. I could tell by the self-confidence.When we parted, I told him he looked good, that he looked more defined, and more energetic. He was happy: "Thanks a lot for all your advice. It's really made a huge difference. I feel great, and my abs are starting to show!"Not eating enough salt and not eating enough fat is a classic mistake that too many people do. We have been brainwashed into thinking we should avoid fats and we should avoid salt. So, when we cut the carbs, we continue to avoid fat and avoid salt. Then, we get tired and weak, and we think it's because we don't eat carbs. Totally not! We're just not getting enough salt and fat.And so, we have to repeat this, and repeat it over and over again. Eventually, it sinks in. Especially when we feel the difference it makes. Just like it happened in this case with my Columbian buddy at the gym. So, what's the moral of the story?You want to feel strong, and energetic? You want to look healthy and young? You want to get ripped with tight 6-pack abs? The formula is simple:Cut the carbs. Fast intermittently. Drink alkaline water on an empty stomach. Work heavy weights 3 times a week. Eat enough protein. Eat your salt. And eat your fat. Try it. You'll see. It works like a charm.If you think this article could be useful to others, please Like and Share it.

Read More

Case study: old man can't walk

Some time ago, a childhood friend of mine sent me this message:

I want to help this man. He has a problem with his tendons in both legs. In the morning, he can' t stand up. Can you recommend some minerals and vitamins? Maybe some exercises that can help? Your advice is important.

[caption id="attachment_10800" align="aligncenter" width="447"]

oldMan

The old man that can't walk from the pain in his legs.[/caption]That's all he wrote. So, I replied:

How can I give any advice? I don't know anything about him. I help/treat people with a complete eating and drinking programme. Vitamins and mineral supplements are only used as adjuncts to correct deficiencies. So, before saying anything, I need to know some basic things: How old is he? What work does he do or did? How long has this problem been developing for? Does he drink water and how much? What does he drink? What does he eat every day? Does he have other complaints? How is his digestion? How is his skin (any rashes or dry skin or eczema)? What kind of other problems has he had in his life? And anything else about this health that could be useful?

Here's what I got back:

  • How old is he? What work does he do or did? He's 81. He was a manager.
  • How long has this problem been developing for? The problem started when he was around 65. It has gotten much worse in the past 2 years.
  • Does he drink water and how much? He drinks little water, 0.5 litres a day.
  • What does he eat every day? He eats meat, potatoes, tomatoes, some cheese, and a lot of bread.
  • Does he have other complaints? Heart, kidneys.
  • How is his digestion? He has problems going to the bathroom every day. He goes once every three days.
  • How is his skin (any rashes or dry skin or eczema)? His skin is fine.

His doctor told him to exercise, but he can't even stand up or move properly.

With this info, I was able to get a better idea, and did my analysis of the situation. This is what I replied:

Here is my diagnosis:

This man has been chronically dehydrated for most of his life. Being chronically dehydrated is one of the most health-damaging situation we can be in, but because it is not acute, the consequences are manifested over long periods of time.

The lack of water first leads to a deterioration of the digestive system and digestive function: of the stomach (poor digestion and ulcers), and of the intestines (damaging of the lining, ulcers, and leaky gut), constipation and from it toxins and pathogenic bacteria going back from the colon into the bloodstream.

Second, it leads to deterioration of the kidneys and the nephrons (little filters in the kidneys), because the only way to get the acids out of the blood is to dilute them in water, but if there is a lack of water, then the kidneys do everything they can to keep this water, because water is more important to keep than to get rid of acid. Therefore, not only do the kidneys get destroyed little by little, but the body accumulates the uric acid everywhere in the soft tissues, starting in the joints, and then in the tendons, ligaments and muscles. This leads to incredible stiffness, pain, and eventually to not being able to move.

Third, because our diet is usually rich in calcium but very poor in magnesium, everyone tends to be over-calcified and to accumulate calcium everywhere in the blood vessels, soft tissues of the joints, and in the muscles. This is made much worse by over-acidification and chronic dehydration. Calcification also leads to stiffness, pain, and eventually, to not being able to move properly.

Therefore, the most important things to do in order or priority are the following:

  1. Drink a lot more water (at least 3 litres per day), on an empty stomach (at least 20 minutes before eating), and making sure it is alkaline water (high pH 9-10).
  2. Take baths with 2 cups (500 g) of sodium bicarbonate and 1 cup of magnesium chloride (or magnesium sulphate). The bicarbonate and magnesium will be absorbed into the body through the skin, and will dissolve uric acid and calcium deposits throughout the body.
  3. Drink juice of green vegetables to remove acid buildup in the body, and clean out the intestines.
  4. Take supplements of magnesium (the best form is L-Threonate, because it is bound to fat and is 100% absorbed) in order to help remove build-up of calcium.
  5. Take supplements of vitamins A-D-K2 (I recommend DaVinci's combo supplement because of the high concentration of K2), as these are the most important fat-soluble vitamins, and K2 is the only nutrient that can effectively de-calcify blood vessels and soft tissues.
  6. Take supplements of vitamin C and collagen to help rebuild the cartilage and heal the damaged soft tissues, especially the blood vessels and the joints. It is essential to take whole-food vitamin C, and high quality collagen.
  7. Stop eating sugar, bread, cheese, yogurt, and eat basically very big salads and fatty meats like lamb, veal and porc (only outdoor-living animals).

Good luck, and make sure to let me know how things evolve. If you don't understand something, just ask.

Three weeks later, I got his note from him:

Today I called the old man's wife. She told to me that since yesterday he has no pain, and can move his arms and legs a lot better. He drinks more than 2 litres of water per day, eats and takes the supplements as you prescribed. His grandson translated your message for him. I am very impressed. Thank you so much for you help. Your method works.
It's a nice feel-good story, isn't it? Here's the thing, though. How many millions of people do you think are in the same situation as the one in which this man was? Suffering like he did, for decades growing older, stiffer, less mobile, and in more pain, until the end, which by that point comes as a relief from this difficult and painful life. And from what? Dehydration. Simple dehydration. Long-standing, chronic dehydration.

How much water do you drink each day? What's the pH of the water you drink? How much salt do you eat each day? How much bread and potatoes do you eat? How is your digestion? How often do you go to the bathroom, and how is the wipe? Such simple things, so crucial to health.

If you think this article could be useful to others, please Like and Share it.

Read More

The Iodine Papers 2 - Orthoiodosupplementation

In this paper, the authors continue their investigation and quantitative assessment of how much iodine is needed for optimal health and function of the whole body. As the title emphasises, the primary aim in this paper is to determine the ideal amount of supplemental iodine in light of the fact that it is difficult to get as much as is needed through diet alone in most of the world.The major themes are 1) what the authors have termed iodophobia, the widespread but entirely unfounded fear of iodine, which continues to pervade in the mentality of physicians, and consequently, in that of the general population; 2) iodine needed for optimal thyroid health; and 3) iodine needed for extra thyroidal tissues. Because the effects of prolonged iodine deficiency in cells leads to cancer, and because the second-most iodine-dependent tissues are those of the mammary glands of the breasts of females, much of the discussion is concerned with cancer of the thyroid and breasts.The conclusion is the same as in their first paper: an optimal daily amount of iodine is around 12.5 mg of which 5 mg is in the form of iodine, primarily for the thyroid gland, and 7.5 mg in the form of iodide, primarily for the breasts and other extra-thyroidal tissues.Orthoiodosupplementation: Iodine sufficiency of the whole human body by Guy E. Abraham, MD, Jorge D. Flechas, MD, and John C. Hakala, RPh[caption id="attachment_9492" align="aligncenter" width="310"]

lifespa-image-iodine-pills-bottle

Supplemental iodine for optimal health of thyroid, breasts, skin, and whole body. Long-term average daily iodine intake according to authors should be at least 12.5 mg, and provide both iodine and iodide.[/caption]The paper begins with the authors' motivations, presented clearly in the first two paragraphs. They contrast, on the one hand, that it is known and recognised that iodine is the only element required for and in the synthesis of hormones; that these hormones are involved in embryogenesis, differentiation, cognitive development, growth, metabolism, and regulation of body temperature; that iodine is most concentrated in the thyroid; that iodine is the most deficient trace element in the world with more than one third of the world's population known to be clearly iodine-deficient; and that low iodine is the world's leading cause of intellectual deficiency.Whereas, on the other hand, that optimal amounts of iodine for the human body have never been evaluated nor determined; that supplementation has been considered adequate if it prevented cretinism, simple goitre, and symptoms of hypothyroidism; that it has been assumed that the role of iodine was essentially restricted to the synthesis of T3 and T4, so much so that it has become dogma; and that when thyroid stimulating hormone (TSH) assays became available, iodine urine testing was abandoned as irrelevant, and eventually forgotten to the point where today, most clinical doctors will go through the entire career without ever ordering a urine iodine test.

Iodophobia

The fear of iodine, which most likely has its roots in the work of Wolff and Chaikoff (1948), and which we will examine on another occasion, is present and widespread in the literature for all audiences. It is found in the textbooks used in medical schools, in professional journals, in non-technical publications that appear in health magazines, and in books written for the general public by medical professionals. The authors present a number of examples from different sources spanning this range of different kinds of publications intended for different audiences.They seem to attribute much of the burden for the spread of iodophobia in the US, at least in the last few decades, to one individual, an endocrinologist by the name of Ridha Arem, who was a longtime editor of a professional periodical read by at least 25k endocrinologists throughout the country, and the author of the popular book The thyroid solution: A revolutionary Mind-Body program that will help you, first published in 1999 and currently in its third edition (2017).In this book, on page 305 of the 1999 edition, Arem writes: "research has clearly established that the high dietary intake iodine content in some areas of the world has resulted in a rise in the prevalence of thyroiditis and thyroid cancer." A single reference is given in support of this statement: a paper written by Harach & Williams, entitled Thyroid cancer and thyroiditis in the goitre region of Salta Argentina, before and after iodine prophylaxis, and published in 1995 in the journal of Clinical Endocrinology (43:701-6). In this paper, however, no high iodine intake is present or involved in any part of the study.Harach & Williams (1995) measured urine iodine before and after introduction of iodised salt, and evaluated thyroiditis and thyroid cancer rates. Urine iodine was 9.3 +/- 1.7 mcg/g creatinine before and 110 +/- 13 mcg/g of creatinine after iodisation. There was no change at all in the rates of invasive forms of cancer, and for papillary carcinoma the numbers were 0.78/100k/year before and then 0.84/100k/year after iodisation, which they recognise as insignificant. Not only do these data not support Arem's claims, but they are not even applicable to an evaluation of the potential effects of high iodine intake. Arem does not provide any other references.On the same page Arem also writes: "to function normally, the thyroid requires 150 mcg/d ... In the US, iodine consumption ranges between 300-700 mcg/d." No reference is given to support this statement. And this statement is demonstrably false: the National Health and Nutrition Examination Survey, NHANES III (1988-1994), showed that the median iodine in urine was 145 mcg/L, and that at least 15% of US women were markedly deficient, with less than 50 mcg of iodine per litre of urine.The reason why measuring iodine in urine over 24 hours is a good way to evaluate iodine sufficiency, is because most of it is excreted. If the body's tissues (thyroid glands, breasts, stomach lining, skin, etc) have all the iodine they need, then we would excrete close to the entirety of the iodine we consume. The greater the discrepancy between ingested and excreted iodine, the greater the deficiency. But because it is water soluble and hard to store, a long time is needed to replenish iodine stores in the tissues. Hence, for this reason, supplementation with larger doses than those needed for optimal maintenance, and extended over many years, are usually needed to restore iodine sufficiency and balance within the body's most iodine-dependent tissues like the thyroid, breasts, and skin.In a review paper on iodine 'excess' published in 2000 and included in a reference textbook used by endocrinologists in a section entitled Iodine as a pathogen, Roti & Vegenakis the authors report the decline in iodine intake in the US, stating that in 1971-74, it was found that 27.8% of people tested excreted more than 500 mcg/L, whereas in the intervening 15-20 years, this number dropped to 5.3% (1988-1994). Having taken---entirely arbitrarily---500 mcg/L as indicative of excess iodine, the authors present these figures as encouraging and positive in the prevention of iodine 'excess', completely ignoring the remarkable discrepancy with the observations of mainland Japanese that show both an iodine intake that is 100 times greater than the US average, and the lowest incidence of goitre and hypothyroidism: figures presented by Finley & Bogardus in 1960, and more recently also in further studies by Thomas et al. in 1983 and 1986.Moreover, in their review, Roti & Vegenakis note that Amiodarone, a drug commonly used to treat heart arrhythmia, contains 75 mg of iodine per 200 mg tablet (note that this is mg and not mcg), and causes hypothyroidism in 25% of patients that take it. They automatically attributed this to the iodine, but do not investigate the issue further, either by looking at studies on high iodine intakes, or by themselves organising a trial to test this hypothesis, treating arrhythmia using iodine alone without the other pharmaceuticals found in Amiodarone. No such trial has ever been carried out, by the way. Only comparisons between different pharmaceutical drugs.As a third example of iodophobia and misinformation about iodine in the US, the authors use Dr Shames's article in the July 2002 issue of Bottom Line Health magazine, and debunk three statements of fundamental significance:1) Shames writes that iodine deficiency is a thing of the past. However, as mentioned above, NHANES III (1988-1994) found 15% of women to be iodine deficient.2) Shames writes that iodised salt is sufficient to prevent iodine deficiency. However, iodised salt contains at most 75 mcg of iodine per gram, and since most people eat around 5 g/d, this makes at most 375 mcg/d. This amount may be enough to prevent cretinism and goitre, but to obtain even the bare minimum of 5 mg needed by the thyroid, one would have to eat 65 g of iodised salt per day, which is obviously absurd.3) Shames writes that people living near coastlines could even be getting too much iodine. However, studies in several countries found no difference in iodine intake between inland and coastal regions.The unfortunate reality is that all those people who will have read either Arem's books, Roti & Vegenakis's reviews, Shames's articles, or any other published works expressing in similar terms, from a position of authority, statements unsupported by evidence or simply and demonstrably false, will rarely be in a position to question or doubt their validity, and will therefore be left with the entirely unfounded negative predisposition towards iodine transmitted by the authors of these publications.

Iodine for the thyroid gland

The cold war was a period during which the fear of nuclear war, and the subsequent nuclear fallout that would sweep across the region around the explosion was very strong. This fear was shared by most people: parents and grandparents, political leaders and scientists. It was known that the thyroid concentrates iodine: more than 100 times the concentration of other organs and tissues (modern measurements in Delange 2000). It was also known that nuclear fallout would come with a release of large amounts of radioactive iodine in the environment. The nuclear explosion was therefore, in its immediate aftermath, most dangerous for its devastating effects on the thyroid: the thyroid gland would soak up all of that radioiodine, which would destroy it, breaking down its cells from within.The only way to prevent the thyroid from soaking up all that radioactive iodine from the nuclear fallout would be to fill up the receptors of its cells with normal iodine, and thereby minimise the capture of the radioactive isotopes from the explosion. Because iodine is water soluble and not stored very well, to both provide the thyroid with the iodine it needs and protect it from radioactive iodine in the case of a nuclear accident, one would have to take moderately high amounts of iodine every day, or a very large amount as soon as possible before, during or after exposure, and continue for the early period following the explosion, until the levels of radio iodine contamination have dropped. The iodine receptors in the thyroid, breasts, and other tissues being occupied by normal iodine, the radioactive isotopes would have nowhere to latch on, and would therefore simply be excreted in the urine.Studies were carried out to determine the amount needed to suppress uptake of radioactive iodine. A defined amount of supplemental iodine would be taken, and then a fixed amount of radioiodine administered. Measuring the amount of radioiodine retained by the thyroid in proportion to the amount administered would give the protection factor associated with the amount of supplemental iodine.Several groups did such experiments. The results of five groups are presented in Figure 1 below. On the x-axis, we have the amount of iodine in mg consumed per day. On the y-axis, we have the percentage of radioiodine taken up by the thyroid. Naturally, the less iodine is consumed, the higher the percentage of radioiodine retained by the thyroid, and conversely, the more supplemental iodine is taken, the lower the percentage of radioiodine uptake.[caption id="attachment_8875" align="aligncenter" width="5588"]

uptake

Figure 1. Percentage of radioactive iodine absorption as a function of daily iodine intake. The data are those presented in Table 1 and Figure 1, and the original papers from which they were taken are listed and represented with different symbol. The RDA range is shown by vertical lines at its lower and upper limits of 150 and 290 mcg. The data are presented on a log-log scale. The best fit power-law model is shown as the dashed line, and its parameter values are given.[/caption]The greatest protection is conferred by the highest amounts of supplemental iodine, as we can see on the right end of the scale: taking 100 mg/d results in a mere 0.5% uptake, and implies excretion of 99.5% of the radioactive isotope of iodine. At 50 mg/d, uptake is around 1.5%, and excretion around 98.5%. At 20 mg/d, uptake is still below 2% with excretion over 98%, and even at 3 mg/d, uptake is only around 5%, with 95% excretion of the radioactive iodine.The scale, both on the x-axis and on the y-axis, is logarithmic. This means they have equal spacing in powers of 10. And so, the tick marks between 0.1 and 1 represent steps of 0.1, those between 1 and 10, represent steps of 1, and those between 10 and 100 represent steps of 10 units. The units are mg on the x-axis, and percentage points on the y-axis. A linear relationship (a straight line) in log-log space, as the one we see in this plot, shows to a power-law relation, and power-laws tell us that change is very fast.In this case, this tells us that increasing iodine intake from nothing to even a little bit, makes a big difference in terms of decreasing the uptake of the radioactive iodine. On the other hand, it also means that as we keep increasing the amount of supplemental iodine, the decrease in uptake becomes less and less significant. Hence, it is very easy to protect the thyroid against nuclear fallout by decreasing uptake of radioiodine from 100% to 20% by taking just 0.7 mg of iodine per day, but to get maximum protection, we need to take 50--100 mg/d. The great news is that we can get full protection, without having to worry about a thing from all this supplemental iodine, because it is basically harmless, and excesses are eliminated.The authors present these data (together with other data that we don't discuss here) in a table, and then in a graph, which is logarithmic only in x, but linear in y. Therefore, they interpret the relation---which is clearly linear in log-log space, but not in semi-log space---as showing evidence of four different parts with different slopes and different physiological meanings. I believe the single power-law is both simpler and more natural a model to characterise the relationship between supplemental iodine and radioactive iodine uptake by the thyroid. I therefore skip reporting on the details of their analysis of the slopes and x-axis intercepts and interpretation of their meaning.In addition, the authors rightly point out that none of these studies were intended to measure the optimal amount of supplemental iodine. They were motivated by providing a framework for crisis management in the event of a nuclear war. Nevertheless, their scientific value in understanding iodine needs for optimal thyroid function is indeed great. Other studies intended on measuring thyroid absorption of iodine are mentioned: those of Thompson et al (1930), Wagner et al. (1961), and Fisher et al (1965), all pointing to a maximal absorption rate of iodine of about 600 mcg/d. This is interesting, but not enough because absorption rate will depend on state of deficiency or sufficiency, and will also evolve as iodine levels are replenished, assuming more iodine is provided than is absorbed. But two other cases stand out.Plummer, a clinician who treated people suffering from Grave's disease, a severe form of goitre, hypothesised that the hyperthyroidism associated with this condition was caused by iodine deficiency, and furthermore, that it was this deficiency that also caused such a high post-operative mortality rate. He therefore gave his patients 20-30 drops of Lugol's solution before and 10 drops after operations---that's 125-187.5 mg before and 62.5 mg after---and happily saw the mortality rate drop to zero. Of course, this didn't prove his hypothesis as correct; this is never really possible in science. But it is strong supporting evidence, and did show that it was highly likely to be the case. And given that he knew iodine supplementation was harmless, he also knew that it could only help. He was right, and the benefit to his patients couldn't have been greater: it was life over death. It was, naturally, an easy decision to make. He knew that, and now, so do we.Koustras et al (1964) performed extensive studies with meticulous accounting of iodine balance on people to quantify the relationship between the amount ingested and retained over a period of several weeks with daily supplementation. This is what they concluded: "From our evidence, it appears that, from all the doses we used, the thyroid took up about 6-7 mg of iodine before an equilibrium in plasma inorganic iodine was reached." This seems to be, from several lines of evidence, a good estimate of what the thyroid needs.

Iodine for the mammary glands and other tissues

Having established that the thyroid needs 6-7 mg of iodine per day, the authors need to estimate how much is needed by the rest of the body. Because breast tissue concentrates as much iodine as the thyroid, and because, as reported previously, goitre is six times more---that's 600% more---common in teenage girls as it is in teenage boys, it is essential to consider iodine needs of the mammary glands. Here are some facts the authors present that are associated with the problem of iodine deficiency in women:

  • Japanese have the world's highest intake of iodine (14 mg/d from 5 g of seaweed, on average), and the lowest incidence of goitre, hypothyroidism, and breast cancer (Finley & Bogardus 1960; Thomas et al 1983, 1986).
  • There is a strong inverse correlation between iodine intake and cancers of the breasts and ovaries, and a strong positive correlation between thyroid volume and breast cancer incidence: 13 ml in Irish women without versus 20 ml in women with breast cancer (Thomas et al 1983, 1986).
  • There is a strong inverse correlation between free T4 and breast cancer. In 5 different ethic groups from Hawaii, Britain and Japan, the highest levels of free T4 in Japan were associated with the lowest incidence of breast cancer. But T4 therapy doubles incidence of breast cancer. Therefore, it is obviously not T4 that protects against breast cancer in Japanese women, but iodine, which, at the same time, ensures optimal T4 levels. (Ghandrakant, Kapdim & Wolfe 1976; Hinze et al. 1989)
  • The amount of iodine needed to prevent FDB and breast cancer is at least 20-40 times greater than what is needed to prevent goitre (Esquin et al. 1995).
  • Thyroid and skin concentrates iodide; breast concentrate iodine. Both are needed.
  • US intake is about 100 times less than in Japan. In the 1960's iodine was used as an anti-caking agent in flour, which made the average intake approximately four times greater than it is today. Incidence of breast cancer was then 1 in 20. Iodine in flours was replaced by iodine-displacing bromine. Incidence of breast cancer in 2000 (publication date) reported as 1 in 8.
  • Iodine deficiency is without a doubt just as important a cause of thyroid cancer as it is of breast cancer. In 2001 in the US, there were 19500 new cases of thyroid cancers, and of these, 14900 were in women. That's 75%. Now, in 2017, estimates are for 56870 new cases of which 42,470 will be in women. That's still 75%, and it's also about 400% more cases than 15 years ago.

To determine with the greatest precision where iodine is most concentrated within the tissues of the body, and how much is kept, Berson and Yallow (1954) used traceable radioiodine to determine, in addition to what has already been discussed about iodine being most concentrated in the thyroid, breasts, and skin, that the total exchangeable pool of inorganic iodine ranged from 7 to 13 mg across their study. This means, that besides those most iodine-dependent tissues that trap and concentrate it, the body as a whole uses at least this amount on a daily basis.Given this large amount used by the whole body, iodine must have several other functions besides protecting the structure and ensuring the proper physiology of the thyroid and breasts. Derry (2001) reviewed iodine's general properties and benefits to a healthy body. He found that iodine works in organs as an antimicrobial agent, that it has a potent apoptotic function in the body's surveillance mechanisms against abnormal cells, that it has the ability to trigger differentiation, and that, in addition, iodine has powerful antioxidant properties, which confer it equally powerful protective effects on the DNA of cells, because it enhances the singlet to triplet transition, and because the most damaging reactive oxygen species that damage our DNA and other large molecules are usually singlets.Naturally, these effects strongly depend on the concentration of the available iodine circulating in the fluids of the body. Using fluid concentration measurements in the work of Szent-Gyorgy (1957), the authors estimate that an average daily intake of 12.5 mg of iodine, which at the same time, they underline, would offer protection from nuclear fallout at the 3-4% level, would also be sufficient to confer all of iodine's antimicrobial, apoptotic, antioxidant and DNA-protecting effects.

Epilogue

The paper ends with an epilogue where the authors express some difficulties in understanding, in the context of evolution, why humans would have evolved needing so much iodine while recognising how hard it is to obtain as much as is needed. In my opinion, there is no difficulty there from the perspective of evolutionary theory. The first homo sapiens in our lineage, those that developed speech, swept across the world, and came to dominate every last part the planet, in all likelihood evolved on a coastline somewhere in south western Africa eating seafood and seaweed. Many believe that it was their diet, rich in animal foods from the sea that gave them this advantage over other species and even other sub-groups of sapiens scattered here and there on the continent. In fact, it is very likely that it was their iodine-rich diet that conferred to them this evolutionary advantage, which was the intelligence for which sapiens are known.For most of our evolutionary history, bands of humans would have continued to live near coastlines because of all the obvious advantages this offered. As local and global populations grew, bands would scatter in search of more readily available resources and less competition in their ability to access and use them. Those groups that stayed on the coastlines or in areas where the soil was rich in iodine, became the most successful because they were the most intelligent. Those groups that went further inland or lived in areas where the soil was poor in iodine, grew progressively less intelligent and less successful from one generation to the next.There is no problem at all with such a scenario, and, in fact, modern observations and data collecting techniques confirm this: areas where iodine deficiency is common, have the highest incidence of hypothyroidism, goitre, breast cancer, thyroid cancer, but also cretinisms and intellectual deficiency. As attested by a joke used in some towns in the goitre belt when someone does or says something stupid: "Are you iodine deficient, or something?"It wouldn't at all be surprising if, with sufficiently large data sets, we found a strong and tight correlation between iodine intake and IQ levels within populations from the same genetic pool, but also globally across diverse populations from different gene pools. Many other factors come into play. Nevertheless, iodine during pregnancy and childhood is certainly one of the most important for proper intellectual development.For us, each with our own particular genetic makeup and recent ancestral evolutionary history, each with our personal and family history, each with our time in our mother's womb, our childhood and teenage hood upbringing and diet, what this means is that we better make sure we take all the iodine we need to first correct, and then prevent the wide spectrum of problems that iodine deficiency and iodine insufficiency bring about. Might as well maximise our health as well as intellectual potential in this simple way. The costs are insignificant, the risks quasi non-existent, and the potential benefits are tremendous.

Summary

This paper is very similar in spirit and purpose to the authors' first paper. In this second paper, they recall and restate several points they had made in the previous, and extend their detailed investigation of how much iodine is needed for optimal health and function of the whole human body. The main points to remember are that:

  • The fear of iodine is widespread, but wholly unjustified and unfounded.
  • Iodine is most highly concentrated in the thyroid gland.
  • Iodine is essential and crucial for the normal development, and subsequently, normal function of the brain through its action on the thyroid gland.
  • Iodine deficiency is the world's leading cause of intellectual deficiency.
  • In females, iodine is equally concentrated in the breasts as it is in the thyroid.
  • Iodine deficiency is known to cause cretinism and intellectual deficiency, hypothyroidism and goitre, nervousness, anxiety and restless leg syndrome, fibrocystic breast disease, thyroid cancer, and breast cancer.
  • Iodine deficiency causes goitre in women 6 times more often than in men.
  • Breast cancer now affects 1/8 women. In the 1960's it affected 1/20.
  • Thyroid cancer rates have quadrupled in 15 years from 2001 to 2016.
  • 75% of thyroid cancer cases are in women.
  • The thyroid gland needs approximately 6 mg of iodine per day.
  • The mammary glands and rest of the body need approximately 6-8 mg per day.
  • The Japanese are the only known population with iodine sufficiency from diet, which provides on average 14 mg of iodine from seaweed.
  • Minimum average requirement for iodine sufficiency is around 12.5 mg/day.
  • As is the case for most micronutrients, some people need more, some less.
  • It will often be necessary to consume a lot more for extended periods in order to overcome and/or reverse the effects of a long-standing insufficiency or deficiency.
  • Maximum protection of the thyroid from nuclear fallout is gotten at 50-100 mg/day.

We will continue this series with an article by the same three authors entitled: Measurement of urinary Iodine Levels by Ion-Selective Electrode: Improved Sensitivity and Specificity by Chromatography on Anion-Exchange Resin.If you think this article could be useful to others, please Like and Share it.

Read More

No more bipolar disorder?

Our world is replete with diseases of all sorts, illnesses of all kinds, ailments countless in numbers. Modern medicine views these in isolation, and therefore also attempts to treat them in isolation: we have a headache, we take an aspirin; we have high blood sugar, we take insulin injections; we have high cholesterol, we take statin drugs to disrupt the manufacturing of cholesterol in the liver; we have cancer, we are given toxic poisons that kill our cells and hope the cancer will be weakened; we have arthritis or multiple sclerosis, and we are given immune suppressants because it is thought that our own immune system has turned against us, attacking the very body it is intended to protect. We have no idea why, but this is what we do, and this is also what we believe we should be doing.In psychiatry, we treat so-called mental illnesses. But because we are even more clueless in this realm of the subtle functioning of the brain and mind than we are of the subtle functioning of the body and its organs, we look for drugs that suppress the behaviours which are symptomatic of the "illness" we have been diagnosed with. It's very simple: we take uppers and stimulants when we are down and low, and downers and sleeping pills when we are high and excited. Because we all do it, we think it's perfectly normal.When we take a close look, we see that there are no diseases, no illnesses, no ailments that are not caused by biochemical imbalances; we see that all of our health problems are rooted in problems in the biochemistry; and we see that the functioning of the body and the functioning of the mind cannot be considered independently, because they are both nothing other than the functioning of the whole body-mind.Surely a most striking example of this is the now almost forgotten disease condition called pellagra. The name comes from the contraction of the Italian pelle (skin) and agra (sour), and was first used by Francesco Frapolli treating people in the 1880's in Italy where more than 100 thousand suffered from it. But this wasn't unique to Italy. The same was true in Spain and in France in the late 19th century. In the US, it reached epidemic proportions in the American south where it was estimated that between 1906 and 1940, more than 3 million were affected, and more than 100 thousand actually died from it.Can you image that? This many people---millions of people---in quite a restricted region, walking around in manic states, delusional states, paranoid states, seeing and hearing things, talking or even yelling to themselves and others around them, completely incoherent and, in addition, covered in red, sore, flaking and bleeding skin on the arms, neck, and face? What a nightmare it must have been.In all countries and all cases, pellagra was associated with poor nutrition, and more specifically, associated with corn-based diets in which the maize was not treated with lime in the traditional way. Similarly, in all countries and all cases, it was found that a nutritious diet based on fresh animal foods very quickly resolved the problems that afflicted the sufferers of this disease. So, even in the late nineteenth century, they had figured out how to treat and prevent it. The thing is, though, they didn't know why if they replaced the corn and starches with meats and vegetables, people got better.Pellagra would usually first manifest as skin problems: eczema and psoriasis-like irritations and lesions. Then, it brought about anxiety, depression, irritability and anger. And eventually, periods of full blown mania, visual and auditory hallucinations, extreme fear, paranoia, bipolar and schizophrenic behaviours.

Bipolar-Disorder-Mood_scrabbleLetters

Now, if you know someone, if you have been close to someone diagnosed with bipolar disorder, with schizophrenia, with anxiety disorders, depression, or paranoia, you will immediately recognise in this list of symptoms those you saw in this person, surely to different degrees, and surely in the most extreme during a full blown crisis. Without a doubt, at least for bipolar disorder, these symptoms are all present, often simultaneously, and sometimes in close succession.And do you know what pellagra is? It's vitamin B3 deficiency.Yes, pellagra, this terrible disease that caused such awful skin conditions and straight out madness in people, this disease that made these poor people act in ways indistinguishable from those of manic-depressives and schizophrenics, was a simple vitamin B3 deficiency.When this was understood, niacin fortification was mandated, and the epidemic affecting millions of people in the southern United States was resolved almost instantly. After decades of rampant "mental illness" among so many---so much fear, so much anxiety, so much terror within families and communities, so much pain and suffering, and tens of thousands of deaths---a little added niacin ended this national disaster that was the pellagra epidemic almost overnight. The fact that you have most likely never heard of pellagra goes to show how effective niacin fortification has been in preventing it. But something else happened.Following the introduction of niacin fortification, half the patients held in psychiatric wards were discharged. Just like that, they got better, and went home. There was at least one psychiatrist who noticed this remarkable coincidence: his name was Abram Hoffer. He wondered why so many got better, but also why only half. What about the other half? Could it be that they just need a little more niacin? Hoffer was an MD, a board-certified psychiatrist, and a biochemistry PhD. He was also the Director of Psychiatric Research for the province of Saskatchewan in Canada, a position he held from 1950, when he was hired and appointed by the department of public health, until 1967, when he opened a private practice.What he did to check this hypothesis---that maybe more of the psychiatric patients were not mentally ill at all, but just in need of greater amounts of niacin---was to conduct a study. He chose schizophrenics because they are among the most difficult to treat, and also because together with bipolar patients, they have many of the symptoms associated with pellagra. The results were stunning: 80% of the schizophrenics given B3 supplementation recovered. And these results aren't anecdotal---the word often used in a pejorative or derogatory manner to dismiss important observations or evidence that fall outside the narrow realm of the conventionally accepted. These were the results of the first double-blind placebo-controlled nutrition study in the history of psychiatry.What double-blind placebo-controlled means is that he took two equally sized groups of people diagnosed with schizophrenia, and then randomly and blindly, both on the patient's end as well as on his end, gave half of them 3000 mg of flush-less niacin per day in three doses. (Niacin has a flushing effect that would be noticed, but either inositol hexanicotinate or niacinamide can be used instead.) He gave the other half a placebo, which would have been a pill that looked identical, but contained no niacin or anything else that could have any significant effect on them, (like powdered sugar or a starch of some kind). And at the end of the trial, when they looked at which patient got what, they found that 80% of niacin-treated recovered, whereas none in the placebo group showed significant improvements.Over the years, Hoffer treated thousands of people with remarkable success. With simple vitamin B3 supplementation he continued to successfully treat people suffering from schizophrenia, but also people suffering from attention deficit disorder (ADD), general psychosis, anxiety, depression, obsessive-compulsive disorder (OCD), and bipolar disorder. In fact, he considered pellagra, bipolar disorder, and schizophrenia to be the manifestation of niacin deficiency on different scales, and the sufferers to be niacin-dependent to different extents. Obviously, this is the only natural conclusion he could have drawn given how effectively niacin resolved psychiatric symptoms in these people, but also in light of the fact that each individual seemed to need somewhat different amounts to have these positive effects.The expression niacin-dependent was used to emphasise that they needed to take it on a daily basis. Naturally, an essential vitamin is not only essential in the sense that it is absolutely needed, but also in the sense that it needs to be consumed regularly because it is not manufactured within the body. Deficiencies develop when the diet lacks in these essential nutrients, and grow more severe as time goes on. When the nutrients are then reintroduced, the deficiencies can be corrected. Some nutrients are abundant, some are rare. Some are easily absorbed, some are not. Some are more easily stored, and some cannot really be stored at all.In addition, besides the fact that in any given population there is always---for the very same essential nutrient---a range of nutritional needs that vary between individuals based both on their genetic predispositions and on what they do, countless other factors influence and affect the amounts of essential nutrients that each one of us needs to be healthy. These include various kinds of injuries to the body-mind, and in particular to the gut where absorption of nutrients take place, that may have incurred at one point or another from an infection, a virus, a bacteria, a bad diarrhoea we had when we were babies, a childhood disease we don't even remember, and really anything that could have damaged a specific part of the intestine where a specific family of nutrients are absorbed.Any such injury could result in a greatly increased need for a particular nutrient that, without knowing about it, could not be supplied in adequate amounts from diet alone, and would inevitably develop into a progressively more severe deficiency whose effects on the body-mind would eventually appear as dysfunctions that would, without a doubt, have physical as well as psychological or psychiatric manifestations. Why? Because there is no body that functions independently of the mind, and there is no mind that functions independently of the body. There is only this single body-mind.Niacin and B vitamins in general are water-soluble. This means that we pee most of them out, and that we therefore need to have them every day, or nearly, in order to prevent the development of deficiencies. The experience from the last decades of the nineteenth and the first five decades of the twentieth century in Spain, Italy, France, and in the US, showed that a single vitamin deficiency, a simple niacin deficiency, could cause extreme symptoms that included severe psychiatric dysfunctions. It also showed that even very small amounts of B3 added to the otherwise nutrition-less white bread that was eaten as a staple could cure millions of pellagra sufferers, and prevent the disease from developing in the bulk of the population.Unexpectedly, niacin-fortification coincided with a large number of the psychiatric ward patients getting well enough to go home. This observation prompted a study with niacin supplementation which showed that in 80% of the schizophrenia patients treated with niacin, symptoms disappeared in the same way they had in pellagra sufferers, but with higher doses of niacin. It was also shown that a similarly high cure rate was seen in people suffering from ADD, psychosis, anxiety, depression, OCD, and, in the point we wanted to emphasise in this article, bipolar disorder. In almost all cases, niacin supplementation resolved the dysfunctional behaviours and psychiatric symptoms. What varied were the amounts of vitamin B3 needed to achieve recovery, and the speed with which symptoms would come back upon interruption of the supplementation.Therefore, whether you are among the lucky people who never were niacin deficient, among the lucky people who need little niacin, or among the less lucky ones who are deficient, who do need more of it than most, or who are suffering from anxiety or depression, schizophrenia or bipolar disorder, doesn't it make sense to just start taking a little bit of extra B3 each day? Doesn't it make sense to give your body-mind the amount of vitamin B3 it needs, recognising that for each one of us this amount may be different, that for some it will be a lot more than for others, but resting in complete assurance that no ill effects will come from it, because niacin supplementation is harmless, and that the only disadvantage of it being harmless, even in large doses, is that we need to take it daily?Given how inexpensive any form of niacin is, shouldn't we be giving it in large amounts to every patient in every hospital, psychiatric ward, and medical institution? We should, but this will probably never happen. What we can do is take care of ourselves, of those people closest to us like our children and spouses, siblings and parents; of those people we care about like our friends and colleagues; and even of those people who are simple acquaintances who come to us for advice or just to share their concerns about a health issue. And one of the simplest and most effective things we can do to improve our own health and the health of those around us is by taking a little B3 supplement every day. It could just make you feel more relaxed, more focused, calm and at ease, as it does for me, or it could completely transform your world, bringing you from a state of hyper-anxious, paranoid, delusional and hallucinatory mania, back to a relaxed, helpful and trusting, conscientious and reasonable self, giving you the gift of your own life back to yourself.Could it really be this simple and this amazingly miraculous? No more pellagra, no more schizophrenia, no more bipolar disorder, just with a little B3 supplementation? Well, maybe. You try it, and let us know.

Read More

The Iodine Papers 1 - Optimum iodine for the whole body

I will review a collection of research papers written by Guy Abraham (mainly), several of them with David Browstein, Jorge Flechas, John Hakala, individually and in different combinations, one paper with Nicholas Calvino, and another with Roxane Handal. They were published in The Original Internist between 2002 and 2008.These papers form the backbone of the science and clinical evidence that has brought about the resurgence of the therapeutic use of iodine in natural medicine, and together with it, tremendous benefits to thousands of people who have recovered their health from supplemental iodine. I will, in the process, probably review some of the papers that are referenced. My intention is to present a detailed summary of each one of these papers as a series that we'll call The Iodine Papers. This is the first:

Levels of Iodine for Greatest Mental and Physical Health by Guy E. Abraham, MD, Jorge D. Flechas, MD, and John C. Hakala, RPh

seaweedsaladinbowl_cropped

The question posed by the authors is a simple one: what are optimal levels of iodine for overall health. But seeking the answer in the published literature, they discovered that there wasn't one. This paper has three logical parts. The first is a long introduction that includes a review of several historical studies in which they seek to find clues as to what would be the optimum amount to take on a daily basis; optimal meaning not too little, and not too much. The second part is the presentation of the results of a three-month study they did on ten American Caucasian women taking supplemental iodine. And the third is the discussion and conclusions, that naturally includes their proposal for what constitutes the optimal amount of iodine we should have daily.For those (like you M) who are not interested in the details, but just in the answer, in this case it's 12.5 mg per day, in the form of 5 mg of iodine and 7.5 mg of potassium iodide because the two different forms are needed by different tissues. For those of you who are interested, I'll present the contents of the paper in the structure outlined in the previous paragraph.

Introduction and previous studies

In a 1998 editorial in the Journal of Clinical Endocrinology and Metabolism entitled What's happening to our iodine?, it is stated that one third of the world live in iodine-deficient areas, and that iodine-deficiency is the leading cause of intellectual deficiency (mental retardation).The earliest studies that are reported are from the 1920's, one by Marine in Ohio, and one by Klinger before him in Switzerland. Klinger's was performed in an area of the country that had, at the time, an 82--95% incidence of goitre in its population. Goitre is an enlargement of the thyroid gland due to iodine deficiency. Obviously a very serious problem. The study comprised 760 teenagers, of which 90% (684) had goitre. They received between 10 and 20 mg of iodine per week, which equated to an average of 1.4 to 2 mg/day. Fifteen months later, none had experienced adverse effects of any kind, 472 (69%) had recovered, but 212 (28%) still had an enlarged thyroid. The government therefore opted for a slightly higher dose, advising supplementation with 3--5 mg of iodine per day.Marine did his study in Akron, Ohio, where the incidence of thyroid enlargement was not as high, but still 56%. Goitre appeared most often in puberty and six times more often in girls than in boys, and six times more often means 600% more. That's a huge difference. They therefore used only girls. This study was much larger, and everyone started the programme with no signs of thyroid enlargement. 2190 received iodine supplementation, and 2304 were used as controls and didn't get any.The programme ran for 2.5 years, with 5 periods of supplementation, one in the spring and one in the fall, in which the participants were given 200 mg of sodium iodide per day for 10 days. If we calculate a daily average out of those total of 4 grammes per year, it gives 11 mg of sodium iodide, and thus something like 8 mg of iodine. At the end of the 2.5 years, 495 out of 2304 (that's 22%) in the control group had developed goitre, compared to only 5 out of 2190 (that's 0.2%) in the supplementation group.In 1966, two Russian scientists hypothesised that pathologies of the breasts in women could be caused by excess oestrogen from ovarian cysts due to insufficient iodine. They took 200 patients with what they called "dyshormonal hyperplasia of the mammary glands", and gave them 10--20 mg of potassium iodide per day for periods that varied between six months and three years. Within three months a majority experienced significant improvements with decrease in pain, swelling and nodularity. In the 167 who completed the programme, 72% experienced significant improvements. Five patients who had ovarian cysts saw them reduce in numbers and size.Then in 1976, a group of Canadian researchers led by Ghent, extended this study on women with breast disease, and tried different forms of iodine supplements in different amounts on three different groups. They had 233 women on 30--60 mg/day from a 5% Lugol's solution for 2 years, 588 women on 10 mg from iodine caseinate for 5 years, and 1365 on 3--6 mg/day from saturated aqueous iodine solution for 1.5 years.Clinical improvement---both subjective in terms of pain, swelling, discomfort; and objective in terms of reduced fibres and nodules---were seen and measured in all three groups, but with different success rates: 74% in the group using the saturated aqueous iodine solution (3--6 mg/day), 70% in the Lugol group, and 40% in the iodine caseinate group. Moreover, different numbers of women reported adverse effects from the supplementation: 11% in the aqueous iodine group, 7% in the Lugol, and 9.5% in the caseinate group.Notably, the authors reported on the results of autopsies performed in 1928 and in 1973. Evidence for fibrocystic disease of the breast (FDB) was present in 3% of women in 1928. In 1973, FDB was present in 89% of women. That's 9 out of 10 women back in 1973. Do you think the magnitude of the problem has decreased since? Not likely.In Japan, Nagasaki and colleagues published in 1967 the results of their investigation of the relationship between iodine consumption and disorders of the thyroid and breasts. They surveyed different regions, some mainland and some coastal, and found an average daily consumption of seaweed of 4.6 g in mainland areas, which translated into 13.8 mg of combined iodine and iodide. Inhabitants of coastal areas had an even higher daily consumption of iodine. Investigation into the function of the thyroid supplied iodine in the amounts ingested in coastal areas showed that it absorbs more than it secretes as T3 (triiodothyronine) and T4 (thyroxine) whose levels remain in a narrow physiological range, and that the rest, the amount unused in making T3 and T4, is secreted as inorganic iodine, presumably to be available in that form to other tissues. The reason why this was an important study is that Japanese women consuming this amount of iodine, have very low rates of thyroid and breast disorders.Finally, maybe as a remnant and reminder of the importance of iodine in medicine up to our current era of drug-based medicine, the authors make note of the fact that in the 1995 version of the standard reference Remington's Science and Practice of Pharmacy, the 19th edition of this work (now in its 21st), which "for over 100 years has been the definitive textbook and reference on the science and practice of pharmacy", the recommended daily intake of Lugol's 5% solution is between 0.1 and 0.3 ml. Lugol's 5% contains 125 mg of iodine per ml. Therefore, 0.1 ml has 12.5 mg, and 0.3 ml has 37.5 mg of iodine. The authors point out that today, the recommended daily intake in North American and Western Europe varies between 150 and 300 micrograms per day. That's a factor of 83 and 125 times less, respectively, two orders of magnitude less.

The study

Based on these studies and observations, the authors move on with their own investigation to determine the amount of iodine needed for breast normality, using an amount of 12.5 mg of iodine in the same form as in Lugol's solution, providing 5 mg of elemental iodine and 7.5 mg of potassium iodide (KI) in a calibrated, silica-coated tablet to ensure precise dosage, and prevent any possible kind of digestive upsets experienced by some taking Lugol's solution. (The molecular weights of iodine (I) and potassium (K) are 127 and 39. Therefore, their contribution in KI by weight is 76.5% I and 23.5% K. Hence 7.5 mg of KI contains 5.74 mg of I and 1.76 mg of K, and thus a 12.5 mg tablet contains 10.74 mg of I and 1.76 mg of K.)Ten caucasian women with normal thyroid volume (< 18 ml), and a range of BMIs statistically representative of the general population based on the NHANES III study (1988-94) in which 25% were overweight, and 25% were obese. Five of the subjects had normal BMI (18.5--24.9), two were overweight (25--29.9), and three were obese (> 30). BMI is defined as the weight in kg divided by the square of the height in meters. So that if you weigh 60 kg and measure 165 cm, your BMI is 60/(1.65*1.65) = 22. Underweight is defined as BMI < 18.5.An interesting observation about thyroid volume measurements, is that the upper limit for a "normal" thyroid is taken to be 18 ml. These ten women's average was 7.7 ml (with standard deviation 3.6). That's almost half. Moreover, looking at national averages in a number of countries, the authors report they are found to be as follows (in increasing order): Sweden - 7.7 ml, Holland - 8.7 ml, Hong Kong - 8.9 ml, Ireland - 12.9 ml, and Germany - 16.5 ml. Not surprisingly, the countries with the highest average volumetric measurements are those with the lowest intake of iodine, and are those with the highest incidence of goitre.After 90 days of supplementation, the most significant improvements that were noted by the participants were decrease in breast sensitivity or pain, decrease in tremors and in restless leg syndrome. There was no significant effect on blood pressure, body temperature, or body composition except for a small amount of fat loss. From the urinalysis, the only significant difference was that the average pH of the ten participants was 6.05 (+/- 0.69) at the start of the trial, and 7.00 (+/- 0.85) at the end of it. This was attributed by the authors to iodine's antioxidant properties that would naturally reduce the concentration of reactive oxygen species in the cells, and thereby decrease the acid load on the system, leading to an increase in overall pH that would be manifested by an increase in urinary pH as well.Blood chemistry was monitored using 17 markers. All stayed within their reference range. But although no significant changes were seen, qualitative improvements were seen in 9 of them (e.g., drop in creatine, drop in calcium, drop in albumin, rise in sodium, rise in carbon dioxide).TSH (thyroid stimulating hormone) stayed within range for most, except for two participants (#1 and #10) who showed remarkable improvements with a drop from 7.8 to 1.4, and from 21.5 to 11.9 mIU/L. These two participants also showed the most significant change in T4 from 9.2 to 7.9 and 8.3 to 5.4 micrograms/dL, while none of the others saw much change in these values. Free T4 and free T3 stayed more or less the same in everyone. Hypothyroidism is defined as having TSH > 6 mIU/L, and it is estimated that of the order of 8 million American women are hypothyroid, but most of them are unaware of it, what is referred to as subclinical hypothyroid.Breast pain (mastodynia) significantly decreased in 7 out of the 10 participants, and these improvements persisted for at least 3 months after the end of the supplementation. The authors suggest that the potential mechanisms by which iodine can improve breast health and prevent cancer is by neutralising DNA-damaging reactive oxygen species in the cells, by ensuring proper regulation of the cell's apoptotic function, and by its ability to trigger differentiation (Derry 2001), therefore stopping or reversing the process by which cells lose their specialised functions as they become cancerous. Obviously, these are crucially important properties of iodine that are independent of thyroid hormones.

Discussion and conclusions

The goal of this pilot study was to evaluate the effect of iodine supplementation in American caucasian women, a population with a high incidence of FDB and breast cancer, with a daily iodine intake comparable to that of women living in Japan with a very low incidence of both FDB and breast cancer. A key aspect of the study was to measure thyroid function and investigate evidence of toxicity. They identify and discuss three potential adverse effects of iodine supplementation: iodism, iodine-induced hyperthyroidism (IIH), and iodine-induced goitre (IIG).Iodism---an unpleasant brassy/metal taste in the mouth, increased salivation, nausea, and headache in the frontal sinuses---was reported in previous studies on several occasions by people taking 150 mg/day or more. The authors mention that it could have been due to traces of bromine or iodate in the supplements. None of the participants reported signs of iodism in this study.Iodine-induced hyperthyroidism (IIH)---a condition that occurs in iodine-deficient people in the early stages of iodine supplementation---is described in The Thyroid (8th edition, 2000) by Werner & Ingbar in the following terms: "iodine deficiency increases thyrocite (thyroid cells) proliferation and mutation rates. Possible consequences are the development of autonomous hyper-functioning nodules in the thyroid...and hyperthyroidism. Therefore, IIH is an iodine-deficiency disorder." None of the participants developed IIH in this study.Iodine-induced Goitre (IIG) and hypothyroidism---a condition that occurs only under very high doses around 2 g/day (2000 mg/day), and seen in some patients when iodine is used as an expectorant in treating asthma, chronic bronchitis, and emphysema---was not seen in any of the patients of this study. It is noted that people with normal thyroid function taking up to 150 mg/day will see decreases in plasma T3 and T4 concentrations with small compensating increases in TSH but all remaining within normal range. However, in people with thyroid disorders, supplementation can induce IIG, and therefore, supervision through regular blood testing of thyroid markers is important.It has been obvious for a long time that women need more iodine than men. Evidence of this was seen in Marine's study in Ohio in the 1920's, where goitre was 6 times more prevalent in teenage girls than in boys of the same age. Marine also showed that supplementation with the equivalent of 9 mg/d of iodine prevent goitre almost completely, although a few still developed it over the 2.5 year period of the experiment. It has also been known for some time that iodine deficiency leads to abnormalities of the mammary glands.Studies on female rats by Esquin et al. showed that iodine supplementation was essential to prevent FDB and cancer, and using molecular tracing techniques, also showed that the thyroid preferentially concentrates iodide, whereas breast tissue concentrate iodine. Thrall & Bull (1990) confirmed Sequin's findings, and in addition, showed that skin cells, as the thyroid, concentrate iodide, whereas the stomach cells, as the mammary glands, concentrate iodine. Therefore, these two forms---iodine and iodide---are not interchangeable as it was believed for a long time, and both forms are needed and essential for healthy physiology.To establish how much is needed for the breast and thyroid separately, having at this point established that the amount needed for mammary gland sufficiency must be around 12.5--13.8 mg/day, involves establishing the amount of iodine needed for proper thyroid function. For this, the authors refer to the work of Saxena et al. (1962) who define thyroid iodine sufficiency as the minimal daily dose required to decrease the uptake of radioactive iodine by the thyroid to at most 5% of the total radioactive dose administered. The rationale and protective strategy is simple: if there is enough normal iodine to fill the thyroid, its cells will not absorb the radioactive iodine (and it will be excreted); but if there isn't, it will, and that radioactive iodine, lodged in the cells of the thyroid, will, within days, destroy the gland. Saxena and colleagues established that for an adult this minimal effective daily dose is 3--4 mg.This implies that the thyroid needs at least this much daily in the form of iodide, and that the breasts therefore need at least around 9 mg daily. But note that this is the amount needed to maintain proper function and health. Correcting deficiencies and overcoming disorders of the thyroid like goitre or hypothyroidism, of the breasts like FDB or cancer, or of the skin like psoriasis or eczema, will require more, sometime a lot more, and usually for extended periods of time.Moreover, for complete protection of the thyroid against radioactive iodine exposure, Sternthal et al. (1980) showed that further suppression can be achieved using higher doses over at least 12 days: 4% absorption at 10 mg, 1.9% at 15 mg, 1.6% at 30 mg, 1.2% at 50 mg, and 0.6% at 100 mg daily, with no risks at all from the supplementation that remains below the 150 mg/day threshold beyond which some adverse effects can sometimes occur.Abraham, Flechas and Hakala conclude by stating their intention to expand this pilot study and build a database to develop a protocol for iodine supplementation in FDB and other conditions such as subclinical hypothyroidism.What is clear from reading this paper is that everyone, but especially girls and women, would benefit from taking more iodine and iodide in amounts of at least 12.5 mg/day. For some this could be lifesaving. And because there are no risks, there are no reasons not to. Furthermore, it was also made clear that much larger doses up to 150 mg/day can be taken, still without risks of adverse reactions, and with the potential benefits of much improved health and powerful healing of very serious conditions such as breast cancer.We will continue this series with an article by the same three authors entitled Orthoiodosupplementation: Iodine sufficiency of the whole human body.If you think this article could be useful to others, please 'Like' and 'Share' it.

Read More

Tenderly fragile

A few days ago we had our biweekly science operations meeting. Towards the end of it, one of my colleagues mentioned that the INTEGRAL Picture of the Month for December would be the obituary. "Obituary!?! For whom!?!", I asked, with surprise and a little anxiety. "You didn't know? Mike died last week". It came as a slap in the face. I had no idea he was ill. And obviously, I had no idea he was dying. He was 42.Mike and I met in Moscow in 2006 at the 6th INTEGRAL Workshop. I had read his papers, and he had read mine, but we had never met. There was a tension between the Russians and the rest of us. The reason is mostly related to the fact that 1) Russian scientists, formally can, and in practice do, work and share data or analysis results only with other Russians; 2) the Russian space agency put INTEGRAL into orbit, and in return, negotiated with ESA to get one quarter, 25%, of the observing time for the lifetime of the mission; and 3) more specifically related to the topic of my own research, the Galactic Centre, the head of the Russian delegation, the great and famous Professor Sunyaev, had negotiated to get half the observing time on this region, and therefore, share all the data half way down the middle with the official Principle Investigator for the Galactic Centre, my PhD co-supervisor, Andrea Goldwurm. So, there were subtle but definitely palpable tensions.Professor Sunyaev gave a stunning presentation in which he talked about the science that could be and was being done with INTEGRAL data, he drew on his vast mastery of all fields of physics, making analogies, explaining connections, and clarifying issues that most of us could not even see, freshly and spontaneously, without any arrogance, in a simple matter-of-factly kind of way. I was immensely impressed. His was a 40-minute review talk. Mine, on the same day, was a 30-minute presentation, which was also a long one, since the programme contained mostly 20-minute presentations, invited review talks of 40 minutes, and a handful of 30-minute presentations. I gave a shortened version of the talk I had presented in the main amphitheatre of the CEA two months before to my PhD defence committee, and the public in attendance.Everyone was very impressed, I think because, unlike anything I've ever seen at such a scientific conference, the first 10 minutes were spent with my narrating a Discovery Channel video of an voyage through the Galaxy, from the Earth to the Galactic Centre, that I slowed down to give myself enough time to describe the large scale structures and global features of our Galaxy, the distribution of stars and gas that make up its visible contents, talk about their formation and dynamics, about open and globular clusters, types of stars and their different life cycles, about planetary nebulae and supernovae remnants, magnetic field structures betrayed by particles trapped spiralling along them and seen at radio wavelengths, and on and on.It was during the break after that session that Mike came up to me for the first time. He was bright, quick, sharp as a whistle, energetic and curious, open and friendly, but serious. He had a kind of grave seriousness to him. All these qualities appealed to me. He complimented me on the presentation, and we talked for a few minutes. What struck me most was that he was simple and straight forward: not puffed up, not arrogant, not condescending; and not cautious, hesitant, distant, or reserved either. Just open, simple, and straight forward: nothing hidden, nothing fake. I'm like that too. We connected.Later that night, we had the banquet dinner, and we spoke a lot more together after eating. Naturally, given that we were in Moscow, everyone (or almost) drank plenty of wine with dinner, and everyone (or almost) was now drinking vodka. Conversations and laughter flowed freely and echoed in the large hall. Mike invited me to come out in the evening, and meet him with other people at a bar where we could watch, while chatting, the football game. It was the time of the 2006 Football World Cup, and this is what defined the plans for the evenings. I agreed, and we spent the evening together.When it was time to call it a night, after all buses had stopped their service, he offered to walk back with me from the bar to the hotel. I gladly accepted. It was a 45 minute walk across the city, which I didn't know at all, but which was his beloved home town. So somehow, in those few days in Moscow, we became friends. Friends who didn't really know much about one another, but friends that connected on a deeper level. These things are hard to explain, and have to do with personal traits and upbringing, tendencies and sensitivities, affinities and outlook. The few other times we saw each other, either at conferences or meetings, it was always the same. We saw each other for a short time, didn't really have much to talk about because neither of us liked small talk, but we felt happy to see one another. We exchanged a few Skype chats over the years, but that was the extent of our relationship.

eyewithtear-zoom2

And when I heard that he was dead, I was shocked. What first struck me with sadness is that there was no way for me to express to him how I felt about him, and how sorry I was that he was gone. We often hear of someone's passing after they have already passed. This makes it impossible for us to express anything to them: no expression of kinship or feelings of empathy, no sentiments of understanding at what they are going through, no words of support, comfort, or warmth. Nothing more can be expressed to them because they are gone. Tears welled up in the eyes. Impossible to say anything. Impossible to write anything. Impossible to reach him. Impossible, now and forever. Feeling sad and helpless, I sat in silence, tender and fragile.This is what we are: tender and fragile. It's just that most of the time we don't realise it, nor do we think about it. When it hits us, and we feel it for a fraction of a second, we push it away, push it down under the shell that we think hides and protects us.Looking at people every day, friends, colleagues, and strangers, I see so many signs of illness: I see people with the white of their eyes a yellowish colour, with the skin of their face a pale grey; I see dry and dull skin, rashes on the face, or the neck, or the scalp; I see hands and fingers that tremble with uncontrolled tremors when they should be still and unmoving; I see teeth that through a smile can be discerned to be capped by crowns, because they are too white, sitting on top of what are surely devitalised, nerveless, root canal treated teeth, whose dark colour lines the base of the tooth; I see young women with white faces, blueish hued skin under their eyes, sparse and thinning hair, feeling cold and looking down; I see young men with pudgy little man boobs, and men in their 50's with sparse, balding eyebrows; I see bodies, full of fat, fat that is pressing in, compressing their vital organs, their heart, their liver, their stomach and pancreas. And on, and on. So much disease everywhere, and nothing to be done for these poor people. Nothing to be done because they don't know, and because they don't want to know.Could I have helped Mike? I'm sure I could have. Did he ever share with me anything about his illness? Did he even know I knew anything about health and disease? No, he didn't. And all these people I see every day? All these people with dehydrated bodies filled with accumulated metabolic wastes, acids and toxins, with undiagnosed intolerances and allergies, with severe B12 and magnesium deficiencies, with bacteraemia from toxic teeth, with serious iron and iodine deficiencies, with testosterone deficiencies and oestrogen overabundances, with extreme insulin resistance and metabolic syndrome, all sick and unaware of it. And what about all those with diabetes and cancer, diagnosed and yet undiagnosed? Is there anything I can do for them, no matter how sad I feel, or how much I would like to? No, there isn't, because it is they who need to look for it, they who need to want to do something about it. And how can they if they don't know, or even worse, don't want to know?And so, little by little, a little better every day, I learn to live with this. This which we all fundamentally are, whether we allow ourselves to realise it or not, whether we allow ourselves to feel it or not, and whether we want to or not, this is what we are: tender and fragile, tenderly fragile.If you think this article could be useful to others, please 'Like' and 'Share' it.

Read More

Keto-adaptation for optimal physical performance

A young man I know recently started to play rugby at a higher level, and thus more seriously than he ever has in the past. Being a smart guy, he wants to get his nutrition "on point", as he writes, in order to perform at his best. He started reading about nutrition on the internet, and found it to be like "a snake oil convention", which it most certainly is. So, he contacted me to get my opinion on the subject. I've been meaning to start writing about training and performance for a while, and balance out all my writings about disease and overcoming disease conditions, and so I thought this would be the perfect opportunity to start.The first thing that needs to be said is that there are common aspects as well as differences in the way training and nutrition should be optimised for different disciplines and goals. In common to all disciplines, are that we always want to perform at our best, and recover as fast as possible. Those are the basic and most fundamental drivers.Differences are much greater in number and far wider ranging in kind, but they can include core aspects like the duration of the event: speed and power versus endurance and stamina (think of the 100 meter dash versus the marathon, or the velodrome cyclist versus the Tour de France rider); the kind of effort required: sustained versus bursty (think of rowing versus tennis); the medium and nature of the forces against which we are working: water or air, with an intervening machine or without (think of swimming versus jumping towards the rim to slam dunk the basketball, skying versus bobsledding, wrestling or judo versus Formula 1 racing).In every case, there are preferred and optimal skills and trained reactions, fitness and body composition, as well as morphology and muscular development. For now, let's just look at the basics in the sense of what every athlete would want and would benefit from no matter what kind of activity they do: best performance and fastest recovery.

The most fundamental point is mitochondrial energy production

At the root of all activity of the body, and at all levels, is the generation of ATP by mitochondria. This is really the bottom line for everything, because this is what cells use to function and do what is required of them in every instant. Mitochondria, small organelles thought to have migrated into a cellular membrane early in the history of evolution of life on the planet, are present in every cell in different amounts, and are essential for life. They can oxidise or burn any macronutrient---glucose, amino acids, or fat---to produce ATP, but the bulk is derived either from glucose or fat. In the process, they produce byproducts of different kinds and in different amounts based on the nature of macronutrient used for fuel, and on the energy demands. Therefore, for optimal performance with a fixed number of mitochondria, we want:

  1. the maximum efficiency in ATP energy production, and
  2. the minimum amount of metabolically taxing byproducts.

These question of deriving the most amount of ATP in the most efficient way with the least amount of byproducts that ultimately impede physiological function, has been considered in On the origin of cancer cells (1 and 2). To summarise in very few words: fatty acids are the most efficient way to store energy, on a gram-per-gram basis they produce the most ATP when oxidised by the mitochondria in an oxygen-rich environment, and their oxidation result in the least amount of acidic and physiologically costly byproducts. Therefore, the inevitable and obvious conclusion, is that for optimal physical performance, we want maximum metabolic efficiency, and for maximum metabolic efficiency, we need to provide the conditions that allow our cells to use fatty acids as their primary source of fuel.

The key is efficient fat utilisation

Efficient fat utilisation is achieved in three stages, which are really just two, because the second and third blend into one another seamlessly. The first step is making sure cells can use fat as fuel. Because insulin signals cells to store energy, it prevents fat utilisation (lipolysis). Inhibiting lipolysis is one of insulin's main functions. To allow cells to burn fat, insulin must be low. To lower insulin levels, we must either fast, or restrict carbohydrates (and to a lesser extent protein). In fasting conditions, most people will reach insulin levels low enough to start fat-burning after 12 to 16 hours. With severe carbohydrate and protein restriction, that means getting all or almost all of your calories from fat, the timescale is probably similar.This first step is therefore achieved within 24 to 48 hours.The second step is basic adaptation to deriving cellular energy needs from fatty acids, those that we eat, and those that are stored within the body's fat cells (adipocytes). This is achieved over the course of about 4 weeks by maintaining a very low carbohydrate, low to moderate protein, and high fat diet.The third and last step is full keto-adaptation, achieved within two to four months of consistent carbohydrate restriction. The word keto in the term keto-adaptation refers to the fact that, from the breakdown of fats, the liver manufactures ketones, the one we measure as a marker is usually beta-hydroxybutyrate, used primarily to fuel brain cells that can only use glucose and ketones. This stands in contrast to most other cells that can use fatty acids directly. An exception to this---the only one, as far as I know---are red blood cells that can only use glucose.A point that needs to be appreciated relates to the potency of insulin to stop fat-burning. As soon as glucose spikes, insulin will spike, and will stop fat-burning. This is particularly important if we are aiming to burn as much fat as possible or become as efficient fat-burners as possible. Consequently, the very worst thing we can do is to have sugar in the morning, just before or just after training. Even a small piece of fruit will do it. This will generally always stop fat burning in its tracks. And not just for a few minutes, but for hours, all the hours necessary for insulin levels to drop back down low enough to allow lipolysis to start again.Maximally efficient fat utilisation is where an athlete wants to be, because this will ensure that they always use as much fat and as little glucose as possible, maximising endurance potential while minimising production and accumulation of lactic acid in the muscles. The most important benefits this brings are to be able to sustain long hours of exercise without "hitting a wall" from the exhaustion of glycogen stores, and having muscle fibres that can function smoothly unimpeded by the presence of large amounts of lactic acid, something which also significantly accelerates recovery, as very little time is needed to clear out the small amounts that remain in the muscle after the event or training session.Fat stores are, for practical purposes, inexhaustible. Even in very lean athletes (below 10% body fat), there will be between 5 and 10 kg of fat reserves to draw on during that ironman, that ultra-marathon, or that mountain-bike-around-the-clock event. Each gram of these 5-10 kg provides 9 kcal of fuel. And so, that endurance event lasting 12 hours during which you burn 7500 kcal could be fuelled with just 830 g of body fat. Naturally, this would not happen, because glycogen from the liver and the muscles will always be used in greater or lesser amounts depending on the level of stress (physiological and psychological), and intensity of the exercise. Nonetheless, this is a good illustration of the massive reservoir of fuel we have at our disposal if we train the body to utilise fat efficiently.[caption id="attachment_7615" align="alignnone" width="800"]

montBlanc-ultraMarathon

The Mont Blanc ultra-marathon. All long distance runners should be keto-adapted.[/caption]To get to this point, the muscle cells need to be trained to use fat, first at very low intensity to make sure that they can fuel the activity using mostly fat, and then gradually increasing the level of intensity to force adaptation in continuing to burn fat as the primary fuel. Best way to achieved this, is by doing low intensity endurance work in a fasted state. And over time, gradually extending duration and increasing intensity.Moreover, doing intense, muscularly demanding, resistance training in the fasted state, is beneficial in many additional ways, including the secretion of greater amounts of growth hormone and testosterone for better growth and repair of tissues, as well as more effective fat utilisation, and protein recycling, which involves the breakdown of damaged, scarred, and otherwise unused tissues in order to maintain, feed and rebuild the muscle tissues that are being used. The same mechanisms involved in protein recycling, act to preserve muscles that are active, while facilitating the breakdown of other tissues, and in particular fat stores, that are not.There are many benefits to training in a fasted state, and doing both low intensity endurance, as well as high intensity resistance training. This is especially true over the long term, as the body becomes increasingly more efficient at fat utilisation, increasingly better at preserving active muscle mass, and increasingly more effective in repairing damaged tissues and cleaning out metabolic wastes. Such conditions are naturally highly favourable for building strong, healthy, lean muscle mass.

Fast recovery requires minimising inflammation

Whenever we do anything physical, some level of micro tears, fractures, and injuries to the muscle and bone tissues take place. The body's repair mechanisms involve an inflammatory response. Without a healthy inflammatory response, we would not be able to recover from injuries, recover from training, or build bone or muscle mass. In fact, we would not be able to survive. What we want, is a fast and effective inflammatory response to heal, repair, or build whatever needs fixing as quickly as possible. What we do not want is a low-level of chronic inflammation that cripples the body from functioning at its best.One of the greatest advantages of running on a fat-based metabolism with maximally efficient fat utilisation, is the fact that the muscle cells are fuelled by burning fatty acids without producing lactic acid. This is in stark contrast to a glucose-based metabolism, where most of the energy is derived from burning glucose, and this always produces lactic acid. As intensity increases, the amount of lactic acid produced will depend first on the intensity, and second on the level of keto-adaptation. The better the keto-adaptation, the more fat will be used to fuel the cells at higher levels of intensity. But, no matter what, the keto-adapted individual, and the athlete in particular, will always, and in all circumstances, produce less lactic acid than the one running a glucose-fuelled metabolism.All acidic metabolic waste products need to be eliminated from the body. This is the role of the kidneys, whose function we have explored in The kidney: evolutionary marvel. For lactic acid that accumulates in the muscles, the first stage is to get it out of the muscle, and this usually takes quite a while. It can take from hours up to several days. The process of clearing it out can be accelerated using massage, stretching, and very low intensity exercise. Alkalising baths are a fantastic therapy for accelerating recovery, and lowering inflammation. Magnesium chloride and sodium bicarbonate baths are therefore an absolute must for the serious athlete. We have detailed the importance, roles and functions of magnesium in Why you should start taking magnesium today, and discussed inflammation and the importance of alkalisation in Treating arthritis (1 and 2). In the end, all metabolic acids lead to increased inflammation, and, when they accumulate in joints and tendons, inevitably to injury. Insulin-stimulating carbohydrates also cause inflammation. They trigger hundreds of inflammatory pathways. And so, by eliminating them from our diet, and allowing the metabolism to run on fat, we have done as much as we could ever do with our food to minimise inflammation in the body. This is what an athlete wants for the fastest possible recovery time, with best training performance, and the smallest risk of injury.The final and most important element for fast recovery and low inflammation is optimal hydration. This is the most important because all of the body's cleaning mechanisms, and especially the function of the kidneys, depend intimately on water and salt. Drink alkaline water on an empty stomach---at least 3.5 litres per day. Eat plenty of salt with all your food---at least a full teaspoon. The more you sweat, the more water, and the more salt you need. We looked in detail at how much of each is optimal in How much salt, how much water, and our amazing kidneys.

When do we eat?

If we train in a fasted state, the best is to train in the first part of the day, taking advantage of the fact that the fast has already lasted 12 hours or so. We can rather easily extend that further, and train around noon, following about 16 hours of fasting. Either way, we will want to eat between one to two hours after training, allowing a good amount of time to make sure the body is well hydrated, and stress levels have dropped. This will bring us to having our first meal of the day somewhere between 12:00 and 15:00. Different people have different schedules and preferences depending on the rhythm of their work and personal life. There are no hard rules, and things have to remain flexible, as irregularity is also an important part of training the body to be more adaptable. In fact, you should be somewhat irregular with your schedule for just this reason.We can have only one meal per day, or we can have two, or we can have one big meal and some snacks, or, best of all, we can sometimes have one meal, sometimes two meals, sometimes have snacks, and sometimes not. The main point in training the body for optimal metabolic efficiency, is to be a significant amount of time, somewhere between 12 and 20 hours, without eating, and to train in a fasted state, in conditions of low blood sugar and low insulin levels. We discussed intermittent fasting in The crux of intermittent fasting, concluding that one of the most important points for successful and effective intermittent fasting is that the body be fuelled by fat and not by glucose. As you will have gathered by this point, our context here relies on the fact that the body is keto-adapted, and therefore, fuelled by fat.

What do we eat?

That was the original question my friend wanted answered, and it is, in a way, very simple to answer: we eat only the least contaminated, least processed, and least insulinogenic, the most natural, most nutrient dense, and most digestible.Least contaminated means minimising our body's exposure to toxic substances, heavy metals, hormone disruptors, pesticides, herbicides, chemical additives, anything that is toxic in one way or another. Least processed means minimising manufactured foods, of which we don't need any. Least insulinogenic means minimising foods that stimulate the secretion of insulin from the pancreas, and this means minimising intake of simple sugars and starches, and not over-eating protein which is about half as insulinogenic as carbohydrates.Most natural echoes least contaminated and least processed, but additionally implies a freshness, a wholesomeness, an absence of adulterations and manipulations. That's what we want. Most nutrient dense means maximising mineral content, vitamin content, optimising amino and fatty acid profiles, and overall micronutrient content for a given amount of calories. Most digestible means minimising digestive stress, maximising enzyme content and nutrient absorption.Digestion, the function and health of the digestive system, is essential. Everything from the food we eat is made available and usable---or not---by and through the digestive system. We have written about digestion on many occasions, but most specifically in Understanding digestion, Intensive natural healing, and Why we should drink water before meals.But in practice, what do we eat? No junk of any kind. No polyunsaturated oils. No sweet things. No starches. Excellent animal foods and excellent plant-based foods: grass-fed, full-fat meats and organ meats like liver; nutrient dense and non-toxic fish like sardines, herring, anchovies, seafood and wild fish (avoid tuna, swordfish and any other large predatory fish, because they contain large amounts of mercury and other heavy metals); fatty nuts and seeds, especially coconut products, but also walnuts, macadamia, almonds, hazelnuts; dark leafy greens, both in salads (mixed baby greens, baby spinach, arugula, lamb's lettuce, lettuces of all kinds) and steamed (chard, spinach, and anything similar); green vegetables like celery, cucumbers, broccoli, asparagus, and string beens; colourful vegetables like purple cabbage, red and yellow peppers. You can eat pretty much anything you can think of that is not processed, nutrient poor, or highly insulinogenic.What should you have for breakfast? We already solved that problem! You do not eat breakfast anymore, remember?What do you have for lunch after training? You're in a rush or just lazy? Well, make yourself a coconut milk smoothy. You can put some protein powder (whey or plant-based, but never soy!), some superfood powders, some hemp or chia seeds. You prefer it sweet-tasting? Put some raspberries or blueberries, and stevia extract. You prefer it green and salty? Put some spinach and salt. In both cases, you can add avocado whenever you want. You can make it with cacao powder, with vanilla extract, or with almond extract. You can add raw or roasted almond or hazelnut butter, sunflower seed butter or tahini. Anything you want that is wholesome and healthful. You'll need to experiment to find combinations you like. Start simple with few ingredients, and add things bit by bit to keep on top of the process and the blends of flavours.If you're not in a rush, or don't want to have a smoothie? In this case you eat exactly as described above: healthy, nutrient dense animal and plant-based foods. This can be as simple as a can of sardines with a bag of organic baby greens. And for supper, the same as for lunch, really. The same simple and basic principles apply to everything you eat at all times, with these two additional points to keep in mind:The first is that because we do not eat for a significant part of the day, and also because we eat either just one or two meals, it is crucial to get enough calories and fat, nutrition and protein. Otherwise, we will quickly find ourselves in calorie deficit, and this means that if we keep it up for a long time, we will first burn through our fat reserves, and then burn through our muscles. As athletes, we definitely do not want this. So, it is very important to get all the calories we need, especially if we train a hard or long hours on a daily basis.The second is that for good, deep and comfortable, restful and restorative sleep, we shouldn't go to bed on a full stomach, and most importantly, not on a stomach full of protein. Digestion is energy intensive. In the case of protein, it is also highly thermogenic, which means that it generates heat. Therefore, going to bed after a large protein meal will lead to a restless, tossing, turning, hot and uncomfortable sleep. For a deep and restful sleep, we want the opposite: little digestive activity, a slow heartbeat, and a low body temperature. This means that large protein meals should be had several hours before bedtime, in the afternoon or early evening, allowing a good three to five hours for full digestion before going to bed. If you can't avoid eating late at night, then eat light: a salad is perfect. For a snack instead of a light meal, have a couple of tablespoons of almond butter on cucumber slices or with celery sticks, for example. Because sleep is really the most important part of the body's recovery process, it is imperative to optimise sleep.

Closing thoughts

With all of what we have discussed mind, is it really any surprise that more and more professional athletes are opting for this metabolic advantage? A number of years ago, the tennis champion Novak Djokovic divulged one of his secrets. What was it? It was exactly this. This year, the third time winner of the Tour de France, Chris Froome, also divulged one of his secrets. What was it? It was exactly this. Are you curious, say, about Froome's standard first meal of the day? Four poached eggs, smoked Alaskan salmon, and steamed spinach. Surprising breakfast? Not in the least. Indeed, an excellent breakfast!We are seeing more and more runners, swimmers, triathletes, but also power lifters and body builders making the switch. It is to their advantage, and when they themselves feel the difference it makes, they know it to be true, at which point there is no turning back. Obviously! Who in their right mind would give up such a metabolic advantage? I suspect that eventually, this will be the standard.And it's not surprising at athletes from various disciplines have made these changes to their diets and lifestyles. What is surprising is that so few have actually done this. The change is low, but there is a clear shift in this direction. This is attested by witnessing training specialists promoting these principles, training athletes in this way, and demonstrating the immense advantages that it brings to them in their performances. Vespa Power discussing fat utilisation on their website is a good example.Is all this stuff new? Of course not! Medical doctors, nutrition researchers , diabetes and metabolic medicine specialists have been talking about this for many decades. Some pioneers include Atkins, Rosedale, Volek and Phinney. And the tradition has continued and expanded, especially in the last decade.Is this the whole story? Of course not! It never is. But it covers the basics. I plan to explore different aspects of what we started discussing here. You can read more about all these things on blogs and websites. Here are three I have read: the athletic MD Peter Attia had a good blog with many informative articles (especially in the beginning) about physical performance at different stages of his own keto adaptation process. The professional ironman triathlete Ben Greenfield also has written about his experience going form fuelling his body with glucose to using fat instead. I point to these because they have articles specifically about the process of keto adaptation we describe above as foundational for optimal sports performance, and also because they were both meticulous in quantifying the physiological changes and writing about them.Marty Kendall has a very good blog on optimising nutrition in the sense that we have discussed here, and have been writing about for five years, starting with our very first post, What to eat: four basic rules. But what Marty has done is to actually quantify the value of foods, using the USDA nutritional database, assigning to each food an insulin index derived from its insulinogenic potential, and a nutrient density score based on its macro and micro nutrient content. The associated Facebook group is a great resource for information on this and related topics.Now that we've reached the end, I hope this was useful, and that I have managed to show that, whatever the reason or motivation, whatever the sport or skill set required, there is really no other option other than this when you are serious about optimal physical performance.If you think this article could be useful to others, please 'Like' and 'Share' it.

Read More

Lauri's amazing story

This is guest post by Lauri.It was a sunny day, not long ago. The phone rang. I did not recognize the caller. I answered. It was an endocrinologist calling about my test results. After relating them to me, he asked: “are you really not taking any drugs?” I said: “no, I’m not”. After this he asked specifically about each of the tests, and about the drugs usually prescribed to address the problems to which they are related, all of which I had. He asked over and over again: “are you sure you didn’t take this drug?” Each time, I gave him the same answer: “yes, I am sure. I didn’t take any drugs”. He had no choice but to give up. He gave a little laugh, and said: “well done!”.As I was hanging up the phone, I realised that this time I had forgotten that the doctor was going to call me. Not long ago, it was a very different scenario: each time I went to see a doctor, or was waiting for their call with the results, I felt like an animal in a cage, trapped, unable to run, just waiting for more bad news.In that moment I felt the warmth of the sun on my face. And I felt good. I felt that life was good, that it was smiling at me. In that moment, there was no ill sensation, no aches, no feelings of discomfort, no signs of disease. How had I gotten here? How was I just a few years ago? Let's take a look back and see.As a kid, I had major issues with vomiting. But they went away when I reached the teenage years. Other than that I was generally pretty well. The “normal” yearly flu, little problems here and there, but who doesn’t? Life was pretty great. As a late teen, I enjoyed drinking and smoking as much as the next guy, but nothing excessive. 10 years later, I was smart enough to stop smoking. I thought I was living a very healthy life since then. Boy was I wrong…I started to have troubles with my stomach. I was given drugs. And as they were prescribed, I remember being happy. I can now take drugs for free and all would be fixed. The problems did not go away. They were just starting. I started having headaches. I started having troubles with my eyes. They were drying up so fast that I felt I needed to use drops multiple times per day. I was stressed out all the time with no apparent reason. For the most part of the day, I had a very strange sensation, one that people usually describe as low blood sugar. Feeling of the floor under me would move, loss of balance and the sensation that someone would have screwed a giant clamp over my head. This only went away when waking up and going to sleep. I always thought that eating would make me feel better. But I never felt better. Time went on, and I just got used to it.I was 27. Never had any problems with my heart, until one day, I woke up with a strange feeling. Something was not right: I was having fibrillations. Later that evening I was waiting for an electrical cardioversion. In the ER I had some time to think when they were hooking up the monitoring systems. To thought to myself: I should be at the peak of my life, and here am hooked up to a bunch of machines with heart palpitations. The diagnosis, after all the tests and examinations, was sarcoidose in the lungs, and most probably in other places as well.It is after this event that the problems really started. I felt cold all the time, no matter what. I had never felt cold before, ever. I started to have such chest pains that I could not put a hockey stick to the ice, the shock went all the way through from the stick to the chest. I tried to lower myself at the level of my knees, and as soon as I did that, palpitations would start and continue for as long as I stayed bent over. I learned to sleep on my back since turning to one side would cause the heartbeat to go haywire, every time, and instantaneously.The sarcoidose was causing hypercalcemia, hypothyroidism and hypogonadism. The entire hormonal system started failing. Almost all pituitary-controlled hormones going down, and as a man, anyone who has had almost zero testosterone knows what that feels like. Nearing 28, here I was. At the age I should have been at my peak, feeling like I could take on the world, I felt like a weak and crippled 90 year-old.Sometime in the middle of this, I found Guillaume’s blog. I hadn’t read any blogs. I used to think they were just about people telling what they wore to work that day. I really was not in a place where I would stop listening to my doctors to follow a regime I found on some random blog somewhere online. I started to read it anyway. I remember I was searching for information on when to take psyllium husks. I read the article about that, and thought it was written in a special manner. I took the advice, and a few days later, read another article. That really was the turning point.Written in such a way that somehow left me no choice but to read them all. When I was done, I thought back on the whole thing, and realized I did not remember anything. So, I read them again. After the second pass, I knew i was doing exactly the opposite all of the things mentioned. Then I started to break it down to little pieces. I took one article that I thought I could follow, and started following that. At the start, I was sure I could never live a life that fully implemented all of the recommendations. I remember thinking, it must be impossible to live like that.But something in my mindset had changed. I noticed myself going back, rereading another article, and starting to follow that. A year later, I had implemented almost half of the changes. And a year after that, I was doing it all.Our different lives, situations, places where we live, climate, wealth, all play a part on how we implement these teachings. But I think I understood the most important part. There is not one without the other. So that time I knew I had to do it all.From the very start, Guillaume had the utmost confidence I would heal. And never during this process I felt like he would throw in the towel. On the contrary, I got regular updates and additional inputs based on my progress, and most importantly, an unwavering confidence and support.After some months, I started to see something. I had a growing number of warts on my feet. And I mean had so much of them that there were almost no normal skin left. During all the years before that, no matter what we did with the doctors just aggravated the situation, and made them grow more. Over 15 long years, this was happening. And what did I see just in few months of alkalizing? They were clearing up! They were disappearing! And in really such short time after eliminating all sugars, grains and starches.I also noticed a few months later that I had not used my eye-drops, which I used to put every single day. In fact, feeling like out-of-this-world was only for a few moments of the day, as before I only felt normal a few times a day. Hmm… I realized that all this time I thought I needed to eat every few hours to remedy this, it was actually the one causing it. The best thing when your body starts to shift to a fat burning is that you don’t need to eat all the time. And your mind stays clear throughout the day.I was also diagnosed with pituitary related hypothyroidism. I had very low values of all the major thyroid hormones, I was cold all the time and if I turned to my side at bed I would lose a regular heartbeat. This condition we remedied with magnesium and iodine supplementation. It only took a few weeks to start noticing a difference, and I started to find it possible to duck and to sleep by my side again. Chest pain also started to fade. This was a starting point in the journey to regain my thyroid health.Hypercalcemia was coming down very nicely as the sarcoidose became less and less active. We used Vitamin K2 as MK-7, to help to body pull out the extra calcium from the bloodstream and put it into the bones where it belongs.In a year’s time, the heart palpitations were gone, magnesium and iodine were clearly working very well. But, a year is a long time. 365 days, day after day, after day, is a lot of days. Natural healing is the only true way to heal, but it is a slow process, and it cannot be rushed. Chest pains were only a slight twist here and now, stress levels started to normalize and I no longer needed any aid for my eyes.Nevertheless, I was still experiencing overall fatigue, weakness, and no sexual energy. This was a tough time for me, as following the regime had gotten rid of so many of the things drugs could not, but at the same time, I had more of the troubles that I found hardest to live with. Many times I wanted to quit. Guillaume did not let me. I am truly grateful he didn’t, and really glad I didn’t.From the start, he made it very clear that I would benefit hugely from juicing. It was too bad I could not afford a juicer at that time, but now, 2 years later, I finally got my juicer. Better late than never, but for you, if you can, start juicing right from the start. You won’t regret it!The sarcoidose had caused the rare case of hypercalcemia and hypercalciuria. This was the only reason I had to be very cautious when supplementing with D3. Guillaume insisted many times that I start supplementing with the combo of vitamins A, D, and K2. I was hesitant, worried about the calcium levels in my blood, because hypercalcemia can become life-threatening very quickly, and even if it does not, it can do a lot of damage in a short time. Now, in retrospect, my opinion is that the root cause of the sarcoidose might actually have been the chronically low level of D3. This is what Guillaume thought, this is what he told me, and I think he was right, because things continued to get better, even if I was taking smaller doses than he would have liked me to take. If you have this rare condition, be sure to closely monitor your D-25, D-1,25 and all calcium levels when supplementing.The sarcoidose had caused massive discomfort for a long time. It was time for it to go. Hormone levels reached rock bottom. Calcium levels started to normalize. And then, hormone levels started to go up. The sarcoidose went dormant, and the body was waking up. What it took was two years of life without carbs, alcohol, drugs or late nights. A strictly measured and timed daily regime of alkaline water, green smoothies, unrefined sea salt, loads of coconut oil, greens, nuts, animal protein and the most important supplements including vitamins A-D-K2, Iodine, Magnesium and B12. These crucial nutrients were the ones I was most deficient in. I hope when you read this, if you feel sting, start to change your life until it changes you.Also something worth to mention is that common colds or flu’s, headaches and fevers are non-existent. I don’t even have any drugs at my home, not even for headaches that used to plaque me.The reality is much more detailed and full of ups and downs. Following this protocol did not heal me in a day. Luckily, I had not damaged my body beyond it’s capabilities of repairing itself. I think the aim of the blog is to lead the reader to an understanding of how to give the body what it needs to function and repair itself. What I consider crucial is to get rid of the idea that drugs can help you in the long run. These writings contained a formula, but they only worked once I realized it was about me. I played a key role by letting myself get sick. The actual healing is done by the body when it is given what it needs, no matter what we think of it. The process continuously tries to find balance.I had moments when I was going downhill so fast, that I thought what is the reason I am living according to some stranger, people around me joking about the lifestyle, thinking that I had read a blog, and had become completely insane. When I was doing it and still felt weaker, that was the crucial point as I did not give up. The route of healing is not always going for the better. Once you realize there are more good days than bad, you know you are going in the right direction. What I mean by this is that even when you are doing everything right, when you are sick, you will have bad days. But don’t give up!I was tested many times with CT scans, MRI scans, blood testing, lung capacity testing, and all the medical procedures that are concerned with sarcoidose and other illnesses I used to have. And every time I felt better, the tests revealed the same. It was no placebo. By no means I am against medical treatment. After all, I had needed it myself. But now I understand they have their place when the situation is dire, but the actual healing process can only be done by your body. Even if you must take drugs, they usually just mask the symptoms. I hope after reading this you will understand you must be proactive with your health. Before my problems, I was living the lifestyle considered to be healthy. My story could have had a very different ending.Writing this today, I just turned 30. So what has changed after I found this blog? Everything. I don’t miss any of my old ways. I don’t miss any of the old food I used to eat. I sure as hell won’t miss the problems that then plague my life. Two years ago I had a disease that most people spend the rest of their lives struggling with, a disease considered incurable by any medical intervention. Now I am the proud father of a little girl, who was just born a month ago! Guillaume’s help did not only save my life, it helped in the procreation of a new one.This writing is a testimonial of this miraculous healing journey of mine. Amazingly, even I am now starting to forget all the problems I had, how crippling they were, and how difficult it was for me to live like that. For this reason, I want to share these details with everyone, so that you can know the incredible level of healing this way of life has given me.I know saying thank you a million times are still only words. We all get a salary from our work, but when you love what you do, it is not about the money either. So what can I say or do to show my level of appreciation? Guillaume’s guidance has transformed my life. My healing process and health are the living proof of this. We have a saying in Finland: “talk is talk, action matters”. So I took action, and it has brought me freedom of the disease conditions so many people are desperately trying to get over. I too was desperate to get better. And, thanks to this blog and thanks to Guillaume, I succeeded.So to you Guillaume, thank you. You were there for me when I was at my worst. You always had faith that everything would one day be fixed, that it was a matter of time and effort. And you were right. Not even in my wildest dreams could I have thought that this host of different problems could be fixed. I hold you in the highest esteem, and can only imagine the countless hours it has taken you to prepare and write these articles. Some of them must have taken you years of research and work. I really appreciate this. Thank you so much.After reading this, if you decide to take the plunge, do it without hesitation. Do it before you get ill. Don’t give up if it doesn’t feel easy all the time, as life usually doesn’t. It is worth the effort. Schedule time to read all of the articles mindfully, and you will see what I mean.All Guillaume ever wanted in return was for me to write about my experiences, to share these experiences with you. If Guillaume’s work has helped you, what I would like to ask of you, is that you help spread the word, share these articles on your social media, like, comment, subscribe and interact. Join me on Patreon, a crowdfunding site to show your support for his work. If we all help a little, together we can make a big difference.Every word written above is true, and everything is described exactly as it happened.If you think this article could be useful to others, please 'Like' and 'Share' it.

Read More

First high-carb-low-fat day after 8 years on a low-carb-high-fat diet

A little taste of what's to come from the results of my experiment with continuous glucose monitoring: this roller coaster ride is what most people experience every day. What was on the menu: melon, raspberries, watermelon, (nap), coconut water, tomato salad, fresh corn, a little 'financier aux pistaches', and finally, popcorn to finish off the day. Can you guess when I ate? Pretty obvious, isn't it?

Screen Shot 2016-08-07 at 14.43.43
Read More

Hypoglycaemia as a metabolic impossibility

Last Thursday, the day before the operation, the dental surgeon told me: "Make sure you have a good breakfast. I don't want you to get hypoglycaemic. It will last several hours." I replied: "I never have breakfast, and it is impossible for me to become hypoglycaemic." He was like: "What? What are you talking about? I don't understand what you're saying." I just said: "Because I don't eat carbohydrates, I cannot become hypoglycaemic." I'm not sure he understood what I meant, but I suppose that given my response, he figured I knew what I was talking about.I'm sure you've heard, at one point or another in your life, someone say: "I'm hypoglycaemic, I need to have something", and then seen them pull out a can or bottle of juice, an apple or an orange, a granola or a chocolate bar? Maybe you've said it yourself! It sounds scientific; like we know what we're talking about. Don't you think? Maybe we've heard a doctor or a nurse say it. Maybe we've heard other people say it, here and there. And over time, saying this has become common parlance in North America, and surely in the UK as well. But what does it mean? What do we mean when we say that?Do you know why I said what I did to the dentist? Do you understand why it is impossible for me, (and possibly you too), to become hypoglycaemic, even without eating for 12, 24, or 36 hours? Why is it that so many people suffer from hypoglycaemia on a daily basis, especially type II diabetics, and all the while, I'm writing that it is 'a metabolic impossibility'? Am I wrong? Am I lying? Am I confused or trying to be confusing? And why is there so much hype about hypoglycaemia? Just Google it and you'll see: 6.35 million hits! There's even a Hypoglycaemic Health Association!First of all, if you don't already know what it means, hypo means low, and glycaemia means 'sugar in the blood'. So, hypoglycaemia just means low blood sugar. But the thing is that what people usually mean when they say this, is that they are feeling tired, slow, flat, low-energy, light headed, maybe even dizzy, and interpret these symptoms to reflect a state of low blood sugar, which it usually does. But there's a caveat: different people will feel the same symptoms at different blood sugar levels! Isn't that a little weird? Doesn't that make you wonder about what this means and implies? If there is such as thing as hypoglycaemia, why would it be different for different people? Meaning, why would a certain blood sugar level be fine for one person, and too low for another?But what is low blood sugar? What is high blood sugar? What is normal blood sugar? Do you have any idea? And how much sugar is that, actually, circulating in the bloodstream? Any idea about that?Let's make it simple. Most people have between 5 and 6 litre of blood. Let's take 5 litres as our baseline to make the numbers easier. Most people, on average, have around 100 mg/dl of glucose in their blood (even if they should have less!) Since there are 10 dl in 1 litre, and 100 mg =0.1 g, this makes 5*10*0.1 g = 5 g. Think on that for a second: in your entire body, there are 5 litres of blood, and in this volume of blood, there are 5 measly little grams of glucose. That's a teaspoon!For very low blood sugar levels, we can go down to about 50 mg/dl (half the normal average). This would amount to just 2.5 g in your whole body! And for critically (as in dangerously) high levels, we can go up to around 400 mg/dl (four times the average). In this case, that would amount to still just 20 g! Therefore, we can say that at any given time in our body there is on average 5 g of sugar, very rarely less than 2.5 g, and only extremely rarely, when we are severely diabetic, up to 20 g. So, all things considered, it's not much, is it?Now, why is it that most people feel hypoglycaemic at one point or another if they don't eat for a while, sometimes in as little as a few hours? Why would different people feel these symptoms more or less intensely? And why would different people feel the same unpleasant or even debilitating symptoms of hypoglycaemia at different concentrations of blood glucose?Well, if you feel symptoms of hypoglycaemia it means that 1) your blood glucose levels are significantly lower than your own usual average level, the level at which your system and cells have gotten used to functioning. This average level could be 200, 150, 120, 100 mg/dl or whatever. And the lower threshold before you start feeling weak, tired or even dizzy could be 40, 50, 60, or even 90 mg/dl. In fact, diabetics or soon-to-be-diabetics, could be walking around, going about their business with an average of 150, 200 or even 300 mg/dl without knowing it, until they get a blood test and someone notices. And they would definitely feel hypoglycaemic at levels that could be quite high. How come?The key to understanding this conundrum in the apparent subjectivity of hypoglycaemia is the notion of glucose tolerance. But what is glucose tolerance if it is not insulin sensitivity? And what is insulin sensitivity if it is not the flip side of insulin resistance? I hope that by now, having been reading this blog for a while, you know everything about insulin resistance, how it develops and how it manifests itself in the biochemistry and metabolic functions of the body. (If you don't, then just reread the posts you'll find in the Diabetes and Carbs categories.)This notion of tolerance explains it all very neatly: with chronic exposure to glucose, (as in high average levels of glucose in the blood for an extended time), insulin resistance increases, and thus, insulin sensitivity decreases. As insulin sensitivity decreases, more insulin is needed to clear the glucose from the bloodstream, and more glucose stays in circulation longer. The cells get used to this high level of insulin, and become less and less sensitive to it, allowing less and less glucose to get in. When the level of glucose drops below the threshold at which the cells can use it without much effort, muscle but especially brain cells, we feel hypoglycaemic. This is why hypoglycaemia is defined on a subjective and relative scale that depends on our own cells' sensitivity to insulin, the hormone that shuttles the glucose in. We become hypoglycaemic when the body cannot use fat to fuel its cells, and ketones to fuel its brain. And the more insulin resistant, the more prone to hypoglycaemia.Moreover, insulin sensitivity, or resistance, exists on a continuous spectrum in the population. It goes from extreme sensitivity to extreme resistance. On the side of high resistance, we have type II diabetics; and on the side of high sensitivity, we have those people like me, and maybe also like you, who restrict carbohydrates, getting most of their calories from fat, and whose cells are consequently fuelled primarily by fat and not by glucose. This makes them, it makes us, not only highly metabolically efficient, but also impervious to hypoglycaemia.This is why I said what I did to my dentist over the phone the other day: for a body whose cells are highly insulin sensitive from being minimally exposed to glucose/insulin in the bloodstream, the levels of which are delicately and sensitively regulated by the liver (glucose) and pancreas (insulin) throughout the day based on food intake, activity and stress levels, the cells are primed to burn fat efficiently, and the liver is primed to produce all the fat-derived ketones to nourish the brain, which they do far better than glucose can. For a body that works like that, it is physiologically impossible to become hypoglycaemic.By the same token, it is also physiologically impossible to 'hit the wall', just because the cells are fuelled by burning fat, not glucose, and there is always a large reservoir of fat in the body, in terms of calories, at least an order of magnitude larger than the reserves of glycogen in the liver and muscles combined, and this, no matter how thin you may be. For example, even at 8% body fat (like me), which is quite low, a person weighing 63 kg (like me), has 5 kg of fat to draw on, providing a reservoir of 45 000 kcal! This is why we see more and more high level long distance athletes and professionals (like this one), and even power lifters (like this one) switching to a very low carb high fat diet (often abbreviated VLCHF). They do this to get lean and to tap into the metabolic advantages of nutritional ketosis.Two final points:1) Insulin sensitivity depends sensitively on exposure to insulin, which depends sensitively on the presence of glucose, which depends sensitively on carbohydrate intake. And it is as simple as this: the less carbohydrate, the less glucose; the less glucose, the less insulin; the less insulin, the more insulin-sensitive. This is always true even if different people have different genetic predispositions to insulin resistance.2) Nutritional ketosis depends on the ratio of calories derived from fat to those derived from carbs, as well as on a specific maximum amount of insulin-stimulating carbohydrates per day. This threshold depends on each person individually. For one person it can be as high as 100-120 g, whereas for another it could be at low as 15-20 g. In addition, if you deplete your glycogen stores from going for a really long bike ride, for example, you can eat as much as 200 or even 300 g of carbs, and still remain in ketosis, because all of it will go to replete glycogen in the muscles and liver. In most people and in most cases, however, a standard guideline is less than 50 g per day. But, remember, the lower the better.So, are you clear on what the deal is with hypoglycaemia? And now, what's it gonna be: carbs, hypoglycaemia, feeling tired and irritable, low in energy and mentally slow, light headed and dizzy; or fats and protein, nutritional ketosis, feeling good and strong, high in energy and mentally sharp, stable and alert. That's a no-brainer, right? What do you say?If you think this article could be useful to others, please 'Like' and 'Share' it.

Read More

Energetics of survival

You wake up, open your eyes. You are surrounded by lush green forest in all directions. There are lots of bees and bumble bees, butterflies and dragonflies, all of them buzzing around the wild flowers and flowering bushes, collecting pollen, sucking nectar, and eating small bugs. There are also birds of all kinds; of kinds and colours you have never seen. Some are flying, frenzied, up and down and all around, some are singing loudly and proudly, some are sitting on branches, watching you, seemingly in just as much amazement to see you there, as you are feeling looking out onto this amazing scene. You have no idea where you are, but you know it's green, vibrant, and full of life, you know it's a beautiful place, a wonderful place. Never in your life had you imagined a place like this could still exist in the world.

sentinelIsland

What happened is that you were brought to and dropped off on this island, untouched by people or technology, while you were asleep, after having been sedated in order not to wake up during the trip. You don't know why, and you don't know who did this. Fortunately, and you don't know this yet, but there are no predators on the island. Not only that, but the weather is perfect in that it never gets too hot or too cold, too dry or too wet, and there are enough food resources for you to live on, even if you have to work to find and get what you need to stay strong and healthy. Since you are alone, you don't have to provide for, or protect anybody other than yourself. What is your first concern?Most probably, finding a place where you can rest and sleep, sheltered from wind and rain, and safeguarded from possible dangers or annoyances that could prevent you from getting a restful sleep. You might eventually build yourself a more permanent house, but for now you need to find a suitable cave-like place, get some branches to close the face of it, and some tall grasses and leaves to make the ground soft enough to sleep on. You get to it.You find a place, find plenty of branches and tall grasses, get your shelter organised. And although this was as easy as you could have hoped for, it has taken you half a day, and it is now early afternoon. What's your main concern now? Food, of course: you're hungry! You set off in search of things to eat. You walk half an hour or so, and the first thing you find is a little patch of what looks like wild spinach. So, you pick and eat a couple of small bunches of it. It's not bad: it tastes just like spinach, even if the leaves are smaller, and a little tougher than you're used to. However, they're just green leaves: you've had enough of them, but you're still just as hungry as you were.You keep walking, looking all around for edible things. Another half an hour later, or thereabouts, you notice a small bush with barely visible blueberries scattered sparsely on it. You walk up to it, and start picking and eating. You're lucky that it's summer. The berries are good, but they are tiny, and so sour; you had no idea wild blueberries were so small, and this sour. After about 15 minutes of carefully picking through bush, you've eaten the three handfuls of blueberries that were on it. But guess what: you're still really hungry. Maybe a little less than when you set off about an hour ago, but hardly at all. Think about it: a couple of bunches of small spinach leaves, and a few handfuls of wild blueberries. That's not much. So, you set off again.Two hours later, you are famished, and you're still walking around looking for food. You notice a little tree that looks like it might have something on its branches. You get closer, and you're so happy when you realise that they are hazelnuts. There's quite a lot, even if the tree is still quite small. Unfortunately, most of them are green. In any case, you start picking all the ones that look ripe, or at least ripe enough to be picked. You're really happy to have stumbled upon that valuable find. You manage to collect about twenty five of them that are either ready or just about to be. You find a good stone for the purpose, and carefully break the shell of each hazelnut, one by one, cautious not to crush the nut inside. You end up with lovely, freshly shelled hazelnuts from which you peel the soft skin to reveal the soft milky white nut underneath. There are enough of them to fill your cupped hands held together. You eat them, enjoying every bite, every moment of chewing, every moment of swallowing. Even if you consciously made yourself eat them slowly and mindfully, the pleasure lasted just under a quarter of an hour. Nonetheless, for the first time today, you feel your hunger and appetite have been appeased.It is now quite late in the afternoon, and you are feeling tired from a whole day's walking and looking for things to eat, but you are now really thirsty: you haven't drank in almost a day. You head back to your shelter, and about half way there, stop at a spring you noticed while walking past it in the morning. You drink to quench your thirst: probably more than a litre of the cold, fresh spring water. That feels so good. Now you feel totally full: full of hazelnuts and water. You are totally ready for bed, exhausted after such a tiring day. It's not even 20:00 but you are bushed. You go back to the cave, and settle in for the night.The next morning you get up, and immediately, based on yesterday's experience, realise that your main concern is to find and get enough food to feel nourished. You figure that the easiest way is to try to catch some fish. At least if you get even just one, that will be enough for the day. You need more than leaves and berries, and that the hazelnuts will need more time to ripen. You walk to the coast. That takes you about an hour. You construct a very simple underwater trap a few meters in from the shoreline, by placing stones in a circular fashion that creates a kind of rounded wall with an opening on one side, in a way that the fish will be able to swim in, but will not be able to continue on their way out to the other side, and will thus get stuck in the shallow underwater pool. That way, you will be able to either grab the fish with your hands directly and throw it out onto the shore, or be able to harpoon it with a sharp-ended pole you would have made. Either way, your hope is that at least one fish of good enough size will get stuck in your trap. You set that up and walk off to continue scouting out the island for other food and water springs.It's a beautifully sunny day, and you are thoroughly enjoying walking slowly, looking around, exploring the island, discovering the landscape. A couple of hours later, you find a little valley along which runs a small stream. As you walk along the bank, a few minutes later, you come across a patch of blackberry bushes. That's fantastic! It's not yet peak season, but there are already a some ripe ones on the south-facing side of the thorny bushes. You haven't had any breakfast, obviously, since you didn't have anything you could eat, and so, you eat all the berries you can find that are ripe enough to be picked. After nearly an hour of delicately and carefully looking and picking while trying to not get all scratched up by the thorns sticking out everywhere in all directions from the long and skinny branches of the blackberry bushes, you have eaten a few handful of berries, but your arms and legs are nevertheless itchy from all the small scratches you did get; it's just impossible not to get scratched picking blackberries. And although you've barely eaten the equivalent of a large bowlful of blackberries, and although you feel a barely noticeable difference in the feeling of your empty stomach, you've had enough of this precarious and thorny picking. You decide to go back to check on your fish trap.You beam-line to the place you set up the trap, and make it back in a little over an hour. You are so excited when you see that there is a large fish swimming in circles in the shallow pool of your trap that you can hardly contain your excitement, but you need to be very careful with your manoeuvres to not let it slip out and swim away. You grab the harpoon you made and left on the shoreline, go up to it very slowly to avoid making waves in the shallow waters, circling around from the north side to make sure you don't cast a shadow on the water over the trap, and with great care and attention, holding your breath both from the excitement of actually catching the fish, and the anxiety of failing to do so, you bring down the harpoon and spear the fish solidly right on the end of the sharpened stick. Fantastic! Brilliant! You never imagined how amazing and empowering it would feel: you've never before had to catch a fish or anything else in order to feed yourself.You make a fire, grill the fish, and finally eat it with immense pleasure and satisfaction. You feel great, really great: totally full and totally content. It's now late in the afternoon, but you're ready to sleep. So, you go back to the cave, and sleep on a full stomach, calm and at ease, a wonderfully restful sleep.When you wake up the next morning, you're surprised by the fact that you don't feel hungry. You're really thirsty, but you're not hungry. You haven't felt like this in days. You get up, walk to the closest water spring, and drink. You drink probably the equivalent of a litre and a half, and you feel totally full. You set off and spend the day walking around, exploring and getting more familiar with the island. It's not until the afternoon that you start to feel hungry again. So, you just go back to the beach where your trap is. You walk up to it, and man! Holy cow! There are three fishes in it! Being even more cautious then you were yesterday, you manage to catch two. The third one escapes, but this is really good anyway: you have two fish instead of just one.Again today, like you did yesterday, you make a fire and grill the fish. But you only grill one of them to eat today. The other one, you wrap in a large banana type leaf, and place in the hot ashes on the side of the fire. You grill your fish to perfection, and eat it with as much joy and satisfaction as you did yesterday, taking your time, eating all the little bits of flesh and skin, sucking clean every fish bone. It's so good! A couple of hours have passed now, since you started grilling, and the second fish wrapped in the leaf has now been steamed in its own moisture, making it easy for you to separate all the edible parts. Putting these aside on a small wooden platter you've made by weaving together thin branches, leaving enough space between them to allow air to flow through. After that you make a little structure that you can place over the fire, and on which you can set the ventilated weaved branch plate with the fish, letting it sit there, a foot or so above the ashes, making sure to maintain the coals hot, and putting dried leaves and pine needles to make smoke.This is a slow process, and you want to dry the fish, not just smoke it lightly, because you want to be able to keep it without it spoiling. You end up doing this all afternoon and well into the night. Eventually, you fall asleep on the beach, next to the smouldering fire, and by the time morning comes, the fish is dried: you can keep it, and it won't go bad. You're exhausted. You hardly slept all night. You take the smoke-dried fish with you back to the cave, and go to sleep for a few hours.When you wake up, it's already mid afternoon. As the day before, you go drink, and then go back to the fish trap to assess the catch, but today there is nothing: not a single fish. Well, no problem, you think, there's the smoke-dried fish back at the cave that you can have for supper. You decide to make a detour and hike back to the blackberry patch on your way back. It's going to take some time, but you already have your plan for supper, so you enjoy the one hour walk to the valley with the blackberries. You pick and eat berries for a while, maybe a little under an hour, and then make your way back home to the cave. You take out your smoked fish, but eat only half of it. You never know if there's going to be a catch tomorrow, and your don't want to be left without having anything to eat for dinner the next day. Anyway, half the fish is enough to make you feel full and satisfied from your meal. You go to sleep.When you wake up in the morning, you don't get up right away. You lie back, and reflect on the last few days. You've been on the island for just three days, and in this short period of time you have understood, without having had to think about it even for even a second, the energetics of survival. You have understood, first of all, that there is no way at all that anyone living in the wild could survive for an extended time on plant foods alone. Second, you have understood that the value of foods, in terms of energetics, is measured in the amount of calories, and of the feeling of satiety or fullness they provide. Therefore, the richer in fat and protein the food, the more valuable it is: animals and animal foods come first; fat and protein-rich plant foods like nuts and oily seeds (sunflower, sesame) come second; and all other foods like berries, greens, and other edible fruits and vegetables come third. It's plain and simple, and there's no way around these two basic conclusions.In addition to that, it strikes you that the circumstances in which you have landed---a place with a perfect climate, with no predators, at the best time of the year for finding and harvesting plant foods, and with an amazingly easy access to enough fish to feed yourself---really couldn't be any better. They must have been far worse for almost every individual in all of our ancestral lineages, no matter where they might have been on the globe.And now, considering that every human being on the planet today is a descendant of a tribe of homo sapiens that, it is believed, lived on the south western coast of Africa, ate mostly crustaceans and fish, developed larger and more versatile brains (almost surely due to their diet), and were the first ones to develop advanced language skills, which gave them a greatly increased power of communication, conceptualisation, and abstraction. Considering that it is these people that, beginning between 100 and 70 thousand years ago, started migrating northward and eastward first through and then out of Africa, reaching Polynesia and Australia around 50 thousand years ago, Europe and Asia most likely in several waves between 70 and 35 thousand years ago, their descents eventually reaching North America 12 to 13 thousand years ago, near the end of the last ice age. And considering that this last ice age lasted 100 millennia---that's one hundred thousand years---during which every hominid on the globe, other than those living in equatorial regions, and this includes all homo sapiens and all neanderthals, must have had to live almost exclusively on animals and animal-derived foods, not just for a while, but several tens of thousands of years.Can this even be imagined from the perspective of someone who lives approximately 80 years, but who keeps in memory a sense of time that spans much less than that? Your parents were born around 20-30 years before you. Their parents were born 20-30 years before them. Your great grand-parents, another 20-30 years before that. And do you know anything about your great grand-parents, other than possibly having seen a few pictures and heard a few anecdotes about them told by your parents or grand-parents? And this is just a period of time spanning 60 to 90 years. Think of what this means: not one hundred, not two or three hundred, not five hundred, not even one thousand years, but ten, twenty, thirty, fifty thousand years eating basically only animals, without ever knowing what it's like to eat anything else, a whole lifelong, generation after generation, hundreds of generations after hundreds of generations.What do you think this implies for us now? What does it say about both the essential and most important macro and micro nutrients our bodies and brains need? What our bodies and brains, these incredibly complex living systems, refined over millennia upon millennia in every aspect of their coarsest physical and mechanical, and their most subtle biochemical, hormonal and neurological functions, actually need to function properly? What does it say about what we, as human beings, have evolved over these vast periods of time being dependent upon to be healthy, survive and reproduce?If you think this article could be useful to others, please 'Like' and 'Share' it.

Read More

Vitamin C is not vitamin C

Several years ago now, when I read The Calcium Lie, I found out that vitamin C and whole food vitamin C complex were not the same thing. I wasn't surprised in the least because obviously this is surely the case for most supplements: an extract is not the whole food. But a few days ago, I saw a short video presentation that forced upon me the realisation that there is a huge functional difference between what is sold as vitamin C and the complex vitamin C molecule we find in whole foods.

wholefoodvitaminc

The distinction may seem trivial at first---it has on the whole clearly been missed---but it is rather important: ascorbic acid, that has been equated to and sold as vitamin C, is the substance from which is made the thin antioxidant shell that protects the many constituents of the vitamin C complex as it is found in food. Since ascorbic acid can be produced in a lab, whereas whole vitamin C complex can only be found and extracted from real food and therefore cannot, this is naturally what has been done: manufacture ascorbic acid and sell it as vitamin C.This makes sense, of course, because none of the supplement manufacturers would be inclined to emphasise this point. It would be kind of like shooting themselves in the foot. But also because, given the proven biochemical and physiological value of antioxidants, it's not a far stretch to convince oneself that the usefulness of vitamin C is, in fact, derived from the effects of the ascorbic acid shell. For this reason, when I read Dr Thompson's comments on vitamin C, I made a point to pile on the red peppers, brocoli and lemons in our diet at home, but nonetheless kept on taking ascorbic acid supplements and do to this day. This is about to change.Dr. Darren Schmidt is an American chiropractor who works at the Nutritional Healing Center of Ann Arbour and, as most chiropractors, practices natural medicine, treating thousands of patients each year, most of them suffering from the same kinds of complaints, aches, pains and disorders, as is the case everywhere else. The talk was about heart disease: number one killer in the US and very prominent in all industrialised countries. To make it as clear and simple as possible and get the message across, he described that heart disease arises from the gradual filling up of the coronary arteries supplying blood to the heart with arterial plaques that with time grow to block the way completely or almost, and that this leads to a heart attack. We covered this topic in detail in the article At the heart of heart disease.The main point he wanted to get across is that plaques in the arteries and blood vessels develop because of an injury to the tissues lining the vessels, just like a scab does on the surface of the skin when we accidentally scratch, scrape or cut it, and that a well-functioning organism will fix that injury in the same way as it does the surface of the skin: the scab forms, the skin repairs itself underneath, and when it is healed, the scab falls off. Plaques are like scabs.He explained that, fresh out of university in the early 90's, he had heard at a conference someone speak of the work of a great pioneer in nutritional medicine of the first half of the twentieth century, Dr Royal Lee, a friend and colleague of the other great pioneer Dr Weston Price. Dr Lee was the man who made the first food supplement, and the first concentrated whole food vitamin C supplement. He founded in 1929 the Vitamin Products Company, which later became Standard Process, Inc. Lee taught that this concentrated food in tablet form was like a pipe cleaner for arteries. Hearing this, the young chiropractor thought to himself, if it worked then it should work now, and he began to prescribe vitamin C to all his heart disease patients. For a decade he prescribed vitamin C, and for a decade he failed to see significant improvements or any sign of reversal of atherosclerosis in his heart disease patients. But he had missed something.Frustrated and disappointed, he looked again at the original research and writings of Drs Lee and Price about nutrition and disease, and in particular about vitamin C, and began prescribing only Standard Process vitamin C. What he found, invariably, was a quick improvement in his patients whose chest pains and complains would disappear, and who would gradually feel better and better. Since then, he has repeated this on thousands of people with such success that he now teaches, he now repeats what Dr Royal Lee taught almost a century ago, that the cure for heart disease, for disease of the arteries and atherosclerosis, is vitamin C. And that vitamin C is not ascorbic acid, but it is whole food vitamin C complex.Schmidt is not handsome nor charismatic. He does not speak eloquently. He is far from refined in his choice of words and speaking style. He doesn't come across as a brilliant doctor or scientist, and not even as a bright guy, really. But the clinical experience and observations on which his statements and claims are based are undeniably impressive and clearly unambiguous in the information they convey: ascorbic acid has no effect on healing injured tissues and in allowing for the body to clean up and remove the plaques from the arteries and blood vessels; whole food vitamin C complex does, and it does so remarkably well and efficiently in everyone who takes it.The implication is that other than providing antioxidant effects, ascorbic acid is useless for aiding and promoting healing of tissues. In this case, the concern is the health of the arteries, but it's not a far stretch to conclude that this applies to all injured tissues in general. What is needed is whole food complex vitamin C, which we eat in whole foods or take in supplements that are made from whole foods. Therefore, it's a no brainer: if you are interested in keeping your arteries clean and your heart and brain healthy and well-functioning for as long as possible, take a whole food vitamin C complex supplement, and pile on the vitamin C rich foods in your diet (superfoods highest in vitamin C include Camu Camu, Acerola and Goji ; regular foods highest in C include bell peppers, broccoli, brussels sprouts, strawberries and kiwi).There is one last crucial point to this story, and I was happily surprised to hear it mentioned during the presentation. It is something that is explained by Gary Taubes in Good Calories, Bad Calories, but that is very rarely heard or mentioned anywhere. Vitamin C enters cells through the same channel as sugar does. But for evolutionary reasons, glucose always takes precedence over it (and all other nutrients). Therefore, as long as there is sugar to be shuttled into the cell, vitamin C stays out and waits: it does not enter the cell. So, what does he suggest for the diet? Can you guess? No sugars (simple carbohydrates), no starches (starchy carbohydrates) because they become sugars, lots of fat, adequate protein from healthy animal sources, and lots of green veggies, Sounds familiar? And, of course, whole food vitamin C concentrated in supplement form.Finally, I promise to write about these and other great pioneers of nutritional medicine. I feel that these people who were greatly ahead of their times and usually greatly suffered from it deserve more recognition than they get. They deserve more recognition than they ever will get. But still, I would like to do my part. I don't know when, but I will.If you think this article could be useful to others, please 'Like' and 'Share' it.

Read More

In light of evolution

Every animal in the Natural World is bound to live according to its own nature. This is dictated by 550 million years of evolution since the emergence of complex organisms including the very first ancestor of all animals on the planet today. To live according to its own nature means to live in its natural habitat, to eat what it has evolved to eat, to grow, mature, reproduce, age and die according to the way in which every detail of every aspect of its life has been defined and refined by the environment and living conditions of its ancestors over hundreds, thousands, millions of years.As conditions change, natural selection ensures adaptation. On this question, there are only two possibilities: adapt and evolve or perish and disappear from existence. And this is not a matter of choice or of willingness: it is a biological adaptation that takes place on its own without the conscious intervention of the organism subject to the process.In the Natural World, through the entire history of life on Earth, it has been thus. It has been thus for the very first living microorganisms, for the very first photosynthetic cyanobacteria, for the first eukaryotes and the first multicellular organisms, for all algae, fungi and plants, and for all animals. It has also been true for humans, for the human animal, the human chordate, the human mammal, the human primate. True, until very recently.This is what I understood on that day when I watched, shocked and amazed, that female sheep swallow up her own placental tissues dripping with blood almost immediately after she had given birth to that helpless lamb that was lying unmoving in the shade of a large oak tree.The earliest dates for which we have evidence that people settled in relatively large settlements and sustained themselves by cultivating cereal grains and tending to herds of domesticated animals is about 10 to 12 thousand years ago. Before that, all human populations throughout Africa, Asia and Europe were seasonal nomads that followed the animals on which they relied for food, clothing and tools.An exception to this might be the south Pacific (Melanesia and Polynesia), lands that were settled some 50-60 thousand years ago, but that, unfortunately for those settlers, had little food resources: no large seeded grasses, no easily domesticable animals, and very few fruit-bearing trees or edible wild vegetables. They found a starchy tuber that could be eaten after some processing to remove the toxins it contains. So, this is what they survived on, and this is primarily what they still survive on today.Needless to say that even with the intake of minimal amounts of protein from some animal sources, and today they have domesticated pigs, these people--all the different clans and tribes that evolved in that part of the world--have always been extremely restricted in their evolution by the need to devote so much time to their most essential requirement for surviving longer than a few weeks or months. Moreover, can anyone be surprised by the fact that this is the part of the world where cannibalism has always been practiced and still is practiced to this day?If you were starved of protein, not just for a few days, a few months or even a few years, but for your entire lifetime, generation after generation, of course you would eat your dead rivals and enemies. There's no question or doubt about it. It would be a waste not to. Not only that, but you would also certainly go out of your way to find and make rivals and enemies in order to maximise your meat base. No question or doubt about that either. Naturally, this is what we see there: hundreds of small tribes sharing the scarce natural resources in this inhospitable land by intense rivalry and continuous warring. You would do the same. I know I would. You can be sure of that.The fundamental difference between humans and all other animals is that they are bound--forced by natural selection--to eat only what they have evolved eating. Humans are not only able to disregard this biological framework to which we really are in fact bound as all other animals are, but to actually eat and live in ways that are completely contrary to what is prescribed to them, to us, by our evolutionary history and by natural selection. This is true whether the constraints are imposed upon us by our environment, climate, geography and available resources, or defined by the beliefs that shape our worldview.The former is the dominant in most of the world, but the latter is definitely pervasive in industrialised countries where, for practical purposes, there are no constraints on the availability of foods at any time during the year or any moment during the course of one's whole life, really. And this is what we are addressing here: not the scarcity of food and the restrictions on dietary regimens in those struggling to get enough food for themselves and their dependents, but the effects on our health of restrictions we place on our own diet based on beliefs.This fundamental difference is well illustrated by the fact that large carnivore like jaguars, panthers, tigers and lions eat meat exclusively. They never think about it, they don't consider what they feel like having for supper, they don't sometimes go grazing a little grass or other plants here and there: they always only eat meat, and have been for millions of years. Consequently, these large felines have only sharp teeth without any flat ones for grinding fibres, they have a shorter and simpler digestive tract that measures about 7 metres (compared to about 10 metres for humans), their proportionally larger stomachs secrete such strong concentrations of hydrochloric acid that the pH inside it after meals drops to values around 1 (compared to around 2-3 for humans), the lowest (most acidic) on the logarithmic pH scale, and their livers have much greater capacity (about 10 times the one we have) to concentrate uric acid out of the bloodstream and excrete it in the urine.Cows, bisons, buffalos; sheep, goats, lamas, alpacas; horses, ponies, donkeys, mules and so many other animals eat a diet that consists of basically only grass and grass seeds, have completely different adaptations: they have large thickly enamelled flat teeth for grinding over and over again, and for hours on end throughout the day, those tough cellulose structures of the plant that lock in the nutrition they need to extract, they have extra long digestive systems, some of them with several stomach-like sacs along the way, that actually allows the chewed up grasses to travel back and forth a number of times to maximise the extraction of nutrients, and they have a purely alkaline digestive system, secreting no hydrochloric acid at all, simply because this is what is most suitable and necessary for the optimal digestion and absorption of the sugars, minerals and vitamins present in the grass they live on.These are just a few examples of evolutionary adaptations to a diet of only meat seen in obligate carnivores like large felines or in herbivore grazers, but they are most appropriate because they pertain to the digestive system on which is built every other system and on which our health and survival depends most directly.Like feline carnivores, herbivores do not think about what they will eat for their next meal, what they feel like having for breakfast or for lunch. They always eat the same things, grasses and other little leafy plants, and in the late summer, fall and winter, the seeds of the grasses and other plants that have dried and gone to seed. How much of each depends on where they live and how the climate is. It never depends on their thoughts and feeling about what they should eat. And if we were to offer the lion or the tiger something other than fresh meat, a nice big bowl of freshly cut grass or grass seeds like oat kernels, for example, they wouldn't touch it because for them, it is not food. If we were to offer a cow or a horse a big juicy steak from a gazelle or antilope they would in exactly the same way not even look at it or sniff it because for them, this is not food.All animals eat only the foods that they have evolved to eat in order to live healthy for the right amount of time to allow them to reproduce and raise their offspring to the point where the offspring can themselves do the same for the next generation. For millions of years this process takes place and refines every detail of the unique characteristics of their bodies, of their physiologies and their biochemistries, of their physical aptitudes and their psychological makeup. Animals do not comprehend this: they know it in their natures, they know it in their instincts, they know it in their very bones.We, humans, have the ability to comprehend this, at least when it is taught or explained to us, but because we think, we analyse, we believe, we rationalise, we justify and we convince ourselves and others of basically anything we want using more or less clever logic, more or less sound analyses and rationalisations, and, in the end, more or less convincing arguments and justifications. And we excel at this. We excel at it remarkably.What comes of it? We end up eating and drinking whatever we believe we can or whatever we believe we should, whatever the reason or lack of reason. We eat bread and jam every morning because this is what we've always done, because this is what our parents always did, because this is what everyone around us has always done, and because it tastes so good. We eat at McDonald's, Burger King, Taco Bell or Pizza Hut at lunch because it's fast, convenient, and also because it tastes so damn good. We feed ourselves and our kids pasta with jarred tomato sauce for supper because it's the easiest meal we can make, everyone loves it, and it leaves us with a feeling of being full and satisfied. We eat only plant foods. We eat only animal foods. We eat only raw foods. We eat only brown rice. We eat only salad. We eat no fat. We eat mostly fat. We eat no carbs. We eat mostly carbs. We eat in this way or in that fashion. We eat in all sorts of ways for all sorts of reasons and we somehow never ask ourselves what has this body evolved to eat: what we should eat.In this respect, the situation between humans and all other animals is, at this stage, radically different. So different it couldn't be more different: animals instinctively eat only what they have evolved eating and therefore evolved to eat; we eat only what we feel like eating or what we think or believe we should. We have lost our food instincts and overrun them with beliefs. We do not care to ask ourselves what our evolutionary history, that of our species as well as that of our personal ancestry, tells us about what we have evolved eating, and we trust the word of food "scientists" that tell us preposterous things such as eating egg yolks and animal fats causes heart disease, or that eating large sweet fruits and whole grains is good for us, or that we should drink milk to have strong bones, or that a big brain like ours needs lots of sugar. All preposterous. All mistaken. All unfounded. But we believe. And we listen. For decades on end before the weight of evidence begins to turn the light around. All the while getting fatter and sicker eating inappropriately for our constitution.There are at least two ways by which we can approach the problem of trying to figure out what our long past ancestors would have eaten and preferred eating through the millennia given the constraints imposed upon them by the environment and climate: we can consider the archaeological evidence we have gathered, and combine that with as much as we have learned in the realm of evolutionary biology and physiology, trying to trace back the evolution of the different systems of the body, in particular the digestive system, coupled with the evolution of our brain; the other approach is to look at the energetics of survival and work our way through a series of deductions based on what we know and what we can learn from this process itself.One of the important differences between our closest cousin, the modern chimpanzee, and ourselves is that a chimp eats mostly raw, fibrous plant foods (2/3 stems and leaves and 1/3 small fibrous fruit), and spends many hours each day chewing through these in order to feed itself. As a result, very strong jaws and thickly enamelled teeth together with a long digestive tract through which all these fibrous and nutrient-poor foods must pass as slowly as possible to extract as much as possible out of them. Naturally, this requires a specific kind, and well-developed intestinal flora. As is also natural to expect, and as is in fact the case, the intestinal flora of microorganisms upon which animals depend for proper digestion, and ultimately for survival, develops and adapts to the foods eaten that make their way through the intestines, on the long term, of course, but also on the short term.What we see in the fossil record is that, following the Miocene that lasted for about 18 million years from 23 to 5 million years ago and that was dubbed the golden age of the apes because they flourished all over the world, there were, in different parts of the world, between 13 and 9 million years ago, several genera of hominoids (something between apes and hominids), and that the earliest members of our group lived at the end of the Miocene and beginning of the Pliocene between 7 and 4.5 million years ago. Molecular studies on DNA also suggest from a completely independent analysis (rate of DNA mutations) that our line must have branched off from the common ancestor we share with chimpanzees around 6-7 million years ago. So it is pretty clear that this is the time around which this separation of lineages must have occurred.There are two lines of structural changes used to evaluate and follow the evolution we are trying to trace from that oldest ancestor to the modern forms in our genus Homo: The first looks at changes that, in the structure of the skeleton, especially in the hips, legs and feet, but also in the shoulders, arms and hands, betray evidence for an upright walking posture and manual dexterity as opposed to structures consistent with knuckle walking and tree climbing; the second looks at changes in the upper spine, skull, jaws and teeth that also indicate upright posture (skull) and less ape-like features including smaller canines, smaller top and brow ridges, and a flatter and taller face and forehead. Both lines of evolutionary changes lead to the following scenario as the most likely.Currently, the best contenders for the title of our last common ancestor with the chimp are Sahelanthropus tchadensis (dated at 6-7 million years), Orrorin tugenensis (dated at 6 million years), and Ardipithecus (kaddaba at 5.8-5.2 and ramidus at 4.5-4.3 millions years). All of these fossil species, no matter how little evidence there actually is in some cases, show strong evidence for evolutionary adaptations to upright walking based on the shape of the hip bone or femur or feet or skull. Teeth and skulls also show smaller canines and larger and thicker molars both of which indicate that they ate tougher more fibrous foods like leaves, stems and roots.As is very clearly illustrated in the figure below, from the oldest australopithecines (africanus), the trend towards larger, flatter and even more thickly enamelled teeth, wider and stronger jaw bones, and thicker skulls with powerful top ridges and sideways flaring cheekbones all constructed to sustain the pressure generated while chewing, continues to later species and peaks in Paranthropus Boisei, believed to be the last of the australopithecines, and probably the most robust of the toughest fibre-chewers ever. But while the trend towards narrower hips, longer femurs, thicker heel bones and higher foot arches, all needed to increase mechanical efficiency in upright locomotion, continues to be evident in the later species, we see a reversal in the trend towards better fibre-chewers, in the shrinking of teeth and jaws, the disappearance of the top ridge and flaring cheekbones, and the decrease in brow ridge in the fossils of Homo habilis and in the very well preserved 1.6 million year old Turkana or Nariokotome Boy, the best specimen we have of our ancestral species Homo ergaster.

hominidEvolution-skullsAndJaws-3stages

This is most naturally and sensibly interpreted as the adaptation from a chimp-like diet based primarily on fruit and other plant foods with the rare feasting on animal flesh from group hunts of thought to be important mostly in establishing a clear social order in their hierarchical structure, in the oldest australopiths; to a change in diet towards tougher and more fibrous and naturally less desirable leaves and stems, fallback foods, as they are called, that were available to them after migration out of the depths of the forest and into the dry savannah; and to eventually the shift towards more fibre-less animal foods, rich in calories from fats and protein, only a very small amount of which was necessary for survival in comparison to the amount of fibrous and nutrient-poor plant foods.The implications are clear and also obvious: 1) More fibrous nutritionally-poor plant foods led to adaptations for chewing them but also for processing them internally and must have been associated with a longer much more herbivore-like digestive tract and system. 2) More nutritionally-rich fibre-less animal foods led to the loss of the need for large teeth, powerful jaws and thick skulls, and also must have led to a shrinking of the digestive tract and evolution of digestive adaptations needed to process animal protein and fat, which would include the need for hydrochloric acid in the the stomach to breakdown protein, and bile from the liver to emulsify fats, as well as a new bacterial flora which would have also been entirely different depending on the diet. And 3) the more animal foods were eaten, the more the brain grew in volume, both in absolute terms and relative to body size.These are the most important conclusions from this exploration of our earliest evolutionary history as a species, which also very closely tie-in with our reflections about what we choose to eat and the reasons we invoke or construct in justifying these choices to ourselves and others, because it shows us as plainly and straight-forwardly as is possible to imagine, that in order to live healthy and thrive throughout our life over its natural lifespan, we are bound to eat what our ancestors have evolved eating in exactly the same way as all other animals are, and that this is dictated by our anatomy, physiology and biochemistry, independently of what we think and of what we believe.In the next part, we will explore the question of energetics and food selection, what a hominid would naturally do--what you and what I would do--when faced with the need to seek out food for its own survival, and come back to my own story in more practical terms. And if you are interested in reading more about the topics we touched upon in this article, I recommend Ian Tattersall's Masters of the Planet, Daniel Lieberman's The Story of the Human Body, Jared Diamond's The Third Chimpanzee, and Yuval Noah Harari's Sapiens: A Brief History of Human Kind. Darwin's On the Origin of Species is truly remarkable in scope, in detail, in depth and in foresight. Even if it doesn't relate specifically to the details of the evolution of our genus Homo, it is the foundation of the broadest context in which we as intelligent and literate being understand evolution of all species everywhere since the emergence of life on this planet.If you think this article could be useful to others, please 'Like' and 'Share' it.

Read More

Amazing and shocking

I saw something both amazing and shocking. In barely a few seconds my understanding of nature and my view of the world changed. What I saw on that afternoon, warm and sunny, in late spring, riding up a long hill on my mountain bike, out of a small river valley to a plateau, going home from work, was curled up quietly on the ground in the shade of a large Spanish oak tree and covered in blood. It was a newborn lamb.

newbornlambwithmom

I was so moved, I stopped on the other side of the path a good distance from the baby and its mother, and watched. Within a few seconds I noticed that the mom had a bunch of bloody tissues hanging from her behind, dragging on the ground, and that she was so seemingly bothered by it that it was consuming all of her attention. The little lamb was lying still, and I couldn't tell how well it was, because even though it was breathing, it wasn't moving. But the mother was busy dealing with what was surely hanging placental tissues.What she did at that point is what shocked me: she ate the placenta and all the bloody tissues that were hanging from her. She swallowed it all up in less than a minute. That was hard for me to process. Sheep are vegetarian animals, herbivores just like goats, cows and horses: they just eat grass, bark, small fresh branches and things of this kind. I was shocked by the sight of it, but also by the clashing of my understanding of what it means for an animal to be herbivore and yet eat all this fleshy tissue and blood. How could it be? What did it mean? But what else could she have done?The immediate realisation was obvious: all animals giving birth to babies, across the natural kingdom, whether herbivores or not, and maybe even especially herbivores, must do the same when their babies are born: they must clean everything up, and this includes eating all leftover tissues, and licking themselves and the babies clean to leave everything as traceless as possible to avoid alerting any other animals, most importantly predators, who tend to be carnivores with an exquisitely refined sense of smell, particularly for fresh blood and flesh.What an incredible experience. This surely would not have seemed so amazing or incredible to most people a century ago, but to the eyes of a city-born, city-raised, city-living, city-dweller like me, it was amazing and it was incredible. The images from the scene I had witnessed by accident and by chance kept coming back to the forefront of my attention again and again for several weeks afterwards. Naturally, every time I rode by there to and from work, but also somewhat randomly at different times during the day, both at work and at home. It was for me an experience that revealed something profound about the natural order of things. And this triggered a cascade of small realisations about a whole bunch of things I had read over the years that highlighted connections between them and in relation to what we are, as humans, and what we need to be strong and healthy. This is what I want to share here, but will do so in a few parts.Being vegetarian is kind of like being a human herbivore but not quite. Being a vegan is certainly closer to it, but even that doesn't correspond to it completely. One would have to be a raw food vegan to be as close as a human can be to a herbivore. There are millions of vegetarians around the globe, especially highly concentrated in traditionally non-meat-eating places like India. There are also plenty of vegans, but a lot less. And there are raw foodists, some of which eat animal products and meat, and some that don't. There are fruitarians that restrict their food to only fruit, typically eating mostly sweet fruit (as opposed to low-sugar, fatty fruit like avocados and coconuts). On the other end of the spectrum, there are also people who eat only animal flesh, or only red meat, or only fish, and we can be sure that there is a wide range of diets that are more or less restrictive and more or less extreme, all based on various ideas, beliefs, but also intolerances or pragmatic considerations of necessity and circumstances.The reasons for which we adopt various diets, restricted to different degrees, are without a doubt even more varied than the diets themselves. I chose to stop eating meat for the first time when I was in high school at the age of 16, and remained vegetarian for over 20 years, with a few rare exceptions (like for example while travelling in Iran and not being able to find for periods of days anything other than white rice, baked tomatoes and kebab). Not only did I not eat meat, but I also rarely ate eggs and butter for at least the first 10 years, because, as we all "know" and so many continue to believe from years of brain washing and misinformation, these high-fat, high-cholesterol foods are dangerous for our health. This is false, of course, but whatever.Hence, I ate as many vegetarians do: lots of sweet fruit, hearty breads and muffins, and some nuts or seeds during the day, and typically pasta or rice with vegetables at night, always keeping fat low and carbs high, but also, unfortunately, protein very low. I sometimes made lentils, kidney or lima beans on weekends. I believed---I was convinced, of course---that I couldn't have done better for my health. I kept that up through most of high school and all of university.After my first degree, which for me lasted five years, and after a year of travelling from Europe to Nepal overland, with much increased awareness of environmental issues, I came home and joined several food groups promoting local, sustainable, organic farming on small scales and seasonal eating in accord with regional climate, and learned about the "health benefits" and "virtues" of whole grains and cold pressed polyunsaturated vegetable oils. This is what became the essence of my diet: whole grains and beans, whole grain sourdough breads, plenty of cold pressed vegetable oils, farm vegetables, both cooked and in salads, unrestricted amounts of fruit, and some cheese, butter and eggs, everything from local farmers. Living in Ottawa with its super hot and humid summers and its frigidly cold and snowy winters, for most of the year vegetables were mostly roots, tubers and squashes (potatoes, carrots, beets, turnips, cabbage and squashes in all possible colours and forms), and fruit were basically apples and pears.I had read such convincing literature on the health benefits and therefore importance of unrefined polyunsaturated vegetable oils from sunflower and safflower, pumpkin, sesame and grape seed, hemp and flax seeds, all cold pressed and organic, of course, that I poured them liberally over all salads, grains, beens and breads. Now I was really convinced that this was the best I could do for my health. And convinced as I was of the excellent quality of all these foods, which was indeed excellent, but also convinced of their amazing health benefits, expositions and explanations of which were found in practically every health book, magazine and radio or TV health shows, how could I not wholeheartedly adopt this way of eating recommended by all these "experts" as the most healthful, seemingly based on scientific evidence and solid reasoning, and not also teach those around me by example and through explicit recommendations?This was to define my diet, and, from the spring of 1997, our diet with my wife who had also been a long time vegetarian. When our son was born in late 1998 we even more enthusiastically embraced this way to feed ourselves and our baby. He was breastfed for a year and a half, exclusively for the first six months, and then gradually less, smoothly over the next year. Fortunately for him, his first food at 6 months of age was avocado, an excellent high fat, moderate protein, very low carb, raw and enzyme-rich fruit that would be nourishing and easy to digest and assimilate. That was a great choice suggested by our naturopath at the time. He gradually transitioned to eating basically what we did---whole grains, beans, veggies and cold pressed oils---only for him, they were blended into a puree.Also fortunately for him and us, because some of our local farmers made fresh butter and cheese, and sold fresh eggs from freely roaming hens, we ate more of these foods. And, of course, they were delicious, nutritious and satisfying, but somehow I still felt that we were straying from the ideal diet that would be devoid of those high fat and high cholesterol animal foods. This is how we ate, and four more years passed before we moved to Paris.In France, delighted to be living in a place with a food culture that greatly values fresh, locally grown and hand crafted foods, we continued another four years basically eating as we had done in Ottawa, but with more greens and leafy veggies throughout the year, and more fresh butter, cheese and eggs, still with just as much whole grains. A diet that, according to most natural health experts, aficionados and professionals, was ideal: a diet based on different kinds of whole grains (spelt, kamut, millet and quinoa which was our favourite) served with oil and soya sauce, and different kinds of whole grain breads (wheat, spelt, kamut and rye), toasted and crispy, sometimes dressed with crushed garlic, oil and salt, sometimes with tahini and feta cheese, sometimes with almond or peanut butter, all of these whole grains and breads always so incredibly delicious, and best of all, so we thought, excellently healthy and good for us. Once or twice a week we would buy warm, sometimes steaming, traditional sourdough baguette, super crunchy and crispy on the outside and super moist and chewy on the inside, that we would often have with butter, radishes and salt (and what a treat that was).We always had with our evening meals large leafy green salads, or grated carrots and beets, or thinly sliced red or green cabbage, accompanied by fresh goat cheese. A couple of times a week we would have eggs. Every day we had fruit, always in accord with the season: cherries came first, then strawberries, then plums, then apricots and peaches, then melons and watermelons, then grapes, and finally apples and pears, which were also here in France our standard fruit during the winter. No refined or commercially made foods of any kind, everything local and organic, no junk food, no sweets, no sugar, unpasteurised honey sometimes, and desserts on very special occasions like birthdays or other celebrations.Many would think that this was all pretty incredible, fantastically healthy, even. You, readers of this blog, surely know much better than to think that by now. But I think sharing the details of the realisations that were triggered by my witnessing of the birth of the baby lamb and the mother's eating her own placental tissues, together with the details of this twenty year experience, with explanations of the effects and consequences that I have since understood to have been caused by this apparently excellent, whole, unprocessed food diet, some deficiencies with which I am still struggling to this day, might be of interest and useful for other people who are concerned about what they eat, and are possibly following any one of the large number of different diets promoted for their particular virtues and health benefits over other diets promoted by other people. We will begin this exploration in the next part.If you think this article could be useful to others, please 'Like' and 'Share' it.

Read More

Living healthy to 160 - insulin and the genetics of longevity

Of the most remarkable discoveries of the last 15 years, discoveries that might well turn out to be the most remarkable of the 21st century, are those of the telomere---a little tail at the end of our DNA whose length tells us how long we have left to live, and of the enzyme telomerase---the specialised protein whose job it is to try to repair the telomeres so that the cells (and we) can live longer and, from an evolutionary perspective, increase the probability that we'll have more babies. This and other research into the biology of ageing and the details relating to the transcription of DNA, and the expression or suppression of genes is truly amazingly fascinating. I will turn to this in time, but think it would be jumping the gun to do so now.What is definitely one of the most remarkable discoveries of the 20th century pertains to the hormone insulin. I am not, however, here referring to the fact that its discovery revolutionised medicine by allowing the saving of countless diabetics from highly premature and painful deaths, usually preceded by torturous amputations of their feet or legs and all the of the horror and misery brought on by these seemingly barbaric and radically extreme measures. (And don't for one second imagine that such amputations are a thing of the past: I know for a fact---heard directly from the mouth of a practicing orthopaedic surgeon---that amputations are the reality of his everyday, performing sometimes two in a single day.) I'm not either, at least this time, talking about insulin as the master metabolic hormone that regulates the storage into cells of nutrients circulating in the bloodstream. What I am referring to as one of the 20th century's greatest discoveries in regards to insulin is that of its role in regulating the rate of ageing.Something that is almost as remarkable is that we hardly ever hear or read about this. For me, that's really strange. But whatever, I'm not going to hypothesise and speculate to come up with an explanation for why this is. Insulin as regulator of the rate of ageing is what we'll look at in this article.Why do mice live two years but bats fifty? Why do rats live three years, but squirrels fifteen. Why do some tortoises live hundreds of year? Why do the smallest dogs, like Chihuahuas, live about twenty years, while the largest, like Great Danes, live five to seven years only? And why do we, humans, live around 80 years, rarely making it to 90, and very rarely to 100 years of age? It is this line of questioning that triggered in the late 80's and early 90's a geneticist working in evolutionary biology to hypothesise, for the first time, that ageing could be genetically regulated, at least to a certain extent.It was the discovery and subsequent realisation in evolutionary biology at that time, that a large number of fundamental cellular processes and mechanisms regulated by a variety of genetic expressions were common to widely different organisms. The realisation was that because all animal life must necessarily share a common ancestor, it is not only logical that the most fundamental functions of cells and especially of how genes express themselves under the influence of hormones essential for life could be the same, but that it should be, to a great extent, expected to be that way. And even though these considerations may seem obvious in retrospect, the fact is that there was only one person with this knowledge, asking these questions, and having the means to do something about seeking an answer to some. Cynthia Kenyon, Professor at UCSF, was this person.The subject was quick to choose: the tine worm that Kenyon had already been studying for years, C. elegans, was perfect because it is simple but nonetheless a complex animal, and because it has a short natural lifespan of about 30 days. The first step was clearly defined: find at least one long-lived individual. What seems very surprising from our current vantage point it that she couldn't readily find one: she couldn't convince anyone to join with her in this endeavour. Everyone was at that time convinced that ageing was something that just happened: things just wore out and deteriorated with use and with time; nothing to do with genes. But how could this be if different species---some very physically similar---are witnessed to have such widely different lifespans? It just had to be genetic at some level, Kenyon thought. Eventually, after a few years of asking around and searching, she found a young PhD student that was up to it, and set out to find a long-lived mutant.A number of months down the road a long-lived mutant was found and immediately identified as a 'DAF-2 mutant'. This mutation made the DAF-2 gene---a gene responsible for the function of two kinds of hormonereceptors on a cell's membrane---less active. The next step was to artificially create a population of DAF-2 mutants and see how long they live, statistically speaking, compared to normal C. elegans. It was found that the genetically 'damaged' worms, the ones for which they had turned down the expression of the DAF-2 gene, lived twice as long: starting with exactly the same number of worms, it took 70 days for the last one of the mutants to die compared to 30 days in the normal population.But an additional observation was made: the curve that traced the fraction of worms remaining was stretched by a factor of two from about the start of adulthood for the mutants. They had the same relatively short childhood but then for the remainder of their lives, for every day in the life of the normal worms, the mutants would live two days. The most impressive was that they were really half their chronologically equally aged cousins in all respects: external appearance, level of activity and reproduction.To make your appreciate this point as much as you should, this observation with respect to not just the lifespan but notably the healthspan of C. elegans would translate in human terms in someone being 80 years old but looking and acting like a 40 year old in the sense that nobody could tell that they were not 40, let alone 80 years old. Just like Aragon in the The Lord of the Rings. This person would be like a 40 year old at 80, like a 60 year old at 120, and like an 80 year old person coming to the end of their life by the time they were 160! Can you even imagine that? Hard isn't it. But this is exactly what Kenyon and her team were looking at in these experiments with these little worms.Now they wanted to understand the effect of the DAF-2 gene, or rather, understand the effect of suppressing its expression in the DNA of each cell's nucleus at different developmental stages. If it was turned off completely, the worms would die: clearly, DAF-2 expression, at least in C. elegans, is essential for life. If it was suppressed immediately after birth (hatching), the little worms would enter the Dauer state in which they don't eat, don't grow, don't reproduce, and basically don't move either: they just sit and wait. Wait for what? For better times!This Dauer state is a remarkable evolutionary adaptation seem in some species that allows the individual to survive during periods of severe environmental stress such as lack of food or water, but also high UV radiation or chemical exposure, for example, for long periods of time with respect to their normal lifespan in a very efficient kind of metabolic, physiological and reproductive hibernation. What's really cool is that inducing worms out of the Dauer state, no matter how long they've been in it, they begin to live normally again, moving and eating, but also reproducing. So, in the Dauer state C. elegans literally stops ageing altogether and waits, suspending metabolic activities and physiological functions until conditions for reproduction and life become adequate once again.[caption id="attachment_8017" align="alignnone" width="624"]

celegansfasting

Taken from Worms live longer when they stop eating (http://www.bbc.co.uk/nature/2790633)[/caption]If DAF-2 expression was turned back up to normal, then they moved out of Dauer and resumed their development stages equivalent to childhood, teenage-hood, and then adulthood, but didn't live any longer as adults. Finally, suppressing DAF-2 expression at the onset of adulthood resulted in the extended lifespan as originally observed. The conclusion was therefore clear: DAF-2 expression is essential for life and necessary for normal and healthy growth and development in immature individuals from birth until they reach maturity, and suppressing DAF-2 expression was only effective at extending both lifespan and healthspan in mature individuals.Going further, they now wanted to understand how DAF-2 suppression actually worked to extent healthspan: what were the actual mechanisms that made the worms live longer when DAF-2 expression was turned down. For this, Kenyon’s team needed to look at all of C. elegans’s 20000 genes and figure out how they affect each other. (Note that this is also more or less how many genes we have, but C. elegans has only 3 chromosomes and is also hermaphrodite.) The sequencing of the worm’s genome was done in 1998, and what was found after analysis was very interesting:The DAF-2 gene activate a phosphorylation chain that attaches phosphate groups onto the DAF-16 transcription factor. In normal individuals the DAF-2 gene is expressed normally, the phosphorylation chain works unimpeded, and the DAF-16 transcription factor is inactivated. In the mutants, the DAF-2 gene expression is suppressed, and as a consequence, the DAF-16 transcription factor is not inactivated and instead accumulates in the nucleus. There, DAF-16 encodes what Kenyon’s team showed to be the genetic key to health and longevity they were looking for from the start of this now decade long pursuit: the FOXO gene.What does FOXO do? It promotes the expression of other genes, at least four other genes: one responsible for manufacturing antioxidants to neutralise free radicals the largest amount of which are produced by the mitochondria as they make energy for the cell, a second responsible for manufacturing 'chaperons’ whose role as specialised proteins is to transport other proteins and in particular to bring damaged ones to the cell’s garbage collector and recycling facility to promote the replacement of those damaged proteins by new and well-functioning ones; a third responsible for manufacturing antimicrobial molecules that increase the cell’s resistance to bacterial and viral invaders; and the fourth that improves metabolic functions and in particular fat transport (reduce) and utilisation (increase).It is these four genetically regulated cellular protection and repair mechanisms, the cumulative combined effects of all these increased expressions of antioxidants, chaperons, antimicrobials and metabolic efficiency---all of them at the cellular level---that allow the lucky DAF-2 suppressed mutants to live twice as long twice as healthy. Remarkable!Now that all the cards about how the long-lived mutants actually live twice as long as expected under normal conditions are laid on the table, and that there is only one detail I left out of the story up to this point, tell me: can you guess what are the two sister hormones to which the cell’s sensitivity through the activity of its receptors for them are controlled by the DAF-2 gene? It's a trick question because I told you half the answer in the introduction: The DAF-2 gene encodes the hormone receptors for both insulin and the primary form of insuline-like growth factor IGF-1. Surprised? It isn’t surprising, really. In fact, it all makes perfect sense:Insulin and IGF-1 promote growth; nutrient absorption and cellular growth and reproduction are essential for life and thus common to all living organisms, including the more primitive of them like yeasts; growth in immature individuals is fundamental for health and for ensuring they reach maturity; but growth in adults, in mature individuals, just means ageing, and the more insulin and IGF-1 there is, the faster the rate of cellular damage and deterioration, the more genetic mutations from errors in transcription, the more pronounced the deterioration of the brain and the heart, of the arteries and the veins, of the muscles, the bones and the joints, and obviously, the faster the rate of ageing. Because what is ageing if it is not the word we use to describe the sum total, the multiple negative consequences, the end result of all of these deteriorations in these vital organs and systems but also everywhere else throughout the organism, all of it starting at the cellular level, in the nucleus of every cell.About the necessity of insulin for normal growth, you should definitely not think that these observations impliy we should stimulate insulin secretion in the young in order to ensure proper growth. Totally not! The body knows exactly when and how much insulin is needed at any given time. In fact, any additional stimulation of insulin promoted by eating simple and starchy carbs actually deregulates the proper balance of hormones that the body is trying to maintain. This deregulation from a sugar laden diet in children is the very reason for many wide spread health problems in our youth most important of which is childhood obesity and the metabolic and physiological stresses this brings on. So, leave it to mother nature to know how to regulate the concentration of insulin in the bloodstream. Do not disrupt the delicate biochemical balance by ingesting refined carbohydrates: it's the last thing anyone needs for good health and long life.The first results were so interesting that several other groups joined in this research into the genetics of ageing. Not as much as one would think, but at least a handful of other groups began to apply and expand the techniques to other species. Unsurprisingly, the same effects, although with different magnitudes, were seen in these very different species, from an evolutionary standpoint: fruit flies and mice. In addition, the connection was made with lifespan-extending experiments using calorie-restriction, which have also been carried out on mice and other animals (we’ll look into this another time). And beyond the work around DAF-2, DAF-16 and FOXO, Kenyon’s group investigated other ways to influence lifespan and found two more.The first was by disabling some of the little worm’s sensory neurones of which there are very few, making it easy to test and determine the influence they have separately and in combinations. They tested smell and taste neurones, found that disabling some would extend lifespan while disabling others didn’t. They also found that disabling different combinations of smell and taste neurones could have nulling effects. The second was playing with the TOR gene expression. For now, however, we will leave it at that.As the fact that it is rare and relatively hard to come by this work without actually looking for it, there is something else I find very hard to comprehend. In Kenyon’s various lectures on this work, there is usually a mention of the biotech company she founded called Elixir Pharmaceuticals and how they aim to find one or more drugs that can suppress DAF-2 expression in humans without causing negative side-effects in order to extend lifespan and healthspan as was done in C. elegans with genetic manipulation. That’s fine, and does make sense to a certain extent, especially if we can find not chemical drugs but natural plant-derived compounds that have this effect on us.The thing that doesn’t make sense and that is hard to understand from the naive perspective of the honest scientist looking for the simplest possible solution to a problem of inferring something we don’t know from information that relates to what we want to know: in this case this mean the simplest way to make the best use of this information and apply what we have learnt from these two and half decades of research in a way that we know would be beneficial in promoting a longer and healthier lifespan in humans without risks through the introduction of foreign substances in our body. Because they haven’t, here I offer my attempt to do this.We have, thanks to Kenyon and others, understood in great detail how lifespan in complex organisms can be, to a great extent, genetically regulated, and which genes, transcription factors and mechanisms are involved in the process of regulating the rate of ageing in conjunction with the propensity for developing age-related degenerative diseases. In the final analysis, the main players are the DAF-2 gene that tunes up or down the sensitivity of insulin and IGF-1 receptors, the DAF-16 transcription factor that encodes the FOXO gene but is made inactive by the expression of DAF-2, and the star FOXO longevity gene that promotes the expression other genes responsible for stimulating the cell’s most powerful protection and repair mechanisms.We have, from many decades of research on calorie-restriction and fasting in animals including humans (and which we’ll explore elsewhere), understood that this is an extremely effective way to extent both lifespan and healthspan and basically eliminate the occurrence of age-related degenerative diseases by greatly increase resistance to health disorders of all kinds. Some key observations on calorie-restricted animals include their very low blood levels of sugar, insulin and IGF-1, high metabolic efficiency and ability to utilise fat demonstrated by low blood levels of triglycerides, and their remarkably younger appearance with increased energy and activity levels.And finally, we have, from more than a century of observations and research, concluded that diabetics, whose condition is characterised by very high levels of blood glucose, insulin and triglycerides, are plagued by a several-fold increase in rates of cancer, stroke, heart disease, kidney disease, arthritis, Alzheimer’s and dementia, basically all the age-related degenerative diseases known to us, and in addition, also a several fold increase in their rate of ageing based on the spectrum of blood markers used for this purpose, their appearance, but also on the length of their telomeres.Is it not, therefore, obvious from these observations that high blood sugar, high insulin and high triglycerides are hallmarks of accelerated ageing and a propensity for degenerative diseases, while low blood sugar, low insulin and low triglycerides are instead necessarily related to extended lifespan, extended healthspan and increased resistance to all disease conditions including those categorised as degenerative, and this, independently of the actual mechanisms involved?Is it not, therefore, plausible from these observations that the genetic mechanisms relating to the function of the DAF-2 gene, DAF-16 transcription factor and FOXO gene in conferring to the DAF-2 mutants twice as long a life can, in fact, be activated and enhanced epigenetically by creating an environment in the organism that is conducive to it: simply by keeping blood sugar, insulin and triglycerides as low as possible? In other words, isn’t it plausible from these observations that by manipulating the biochemistry to ensure that blood sugar, insulin and triglycerides are throughout the day and night as low as possible depending on the organisms requirements, that this will actually translate into the activation of the FOXO gene to enhance protection and repair at the cellular level and thus extend lifespan and healthspan?And what is, not only the easiest and simplest, but also the most effective way to do this? It is to eliminate insulin-stimulating carbohydrates---sugars and starches---from the diet completely. This, within 24-48 hours, will allow sugar levels to drop to a functional minimum. The low blood sugar will allow the pancreas to reduce production and insulin levels to drop bit by bit. Lowered insulin will eventually allow the cells to start using the fat circulating in the blood, and in time, increase in efficiency, thereby dropping triglyceride levels lower and lower.Why is it you think that Kenyon never mentions this anywhere? Do you think that this has simply not occurred to her? I honestly don’t know. But if there is a single thing to remember it is this: insulin is necessary for life; in the immature individual, insulin regulates growth; in the mature individual, insulin regulates the rate of ageing and the propensity for degenerative diseases. Hence, if you are a mature individual, and by this I mean full grown, and if you want to live long and healthy, the very first thing you need to do is to keep the concentration of insulin circulating in your blood as low as possible. Everything else that we can do to extend healthspan and lifespan is secondary to this.If you think this article could be useful to others, please 'Like' and 'Share' it.

Read More

Two short fat-loss tales

- You look like you've lost some weight.- Yes, I have! I've lost 12 kg in 4 months. You remember, a year ago, I told you I would do my own diet, and I did!- That's great, congratulations!- You know what I did? I stopped eating junk. I didn't do anything else. I stopped eating chocolate bars and candy; cakes, cookies and ice cream; chips and fried foods, and that's it. I eat everything: anything that is a whole food, and I do have bread and potatoes, rice and pasta, as well as cheese and fruit. I didn't do anything crazy or radical, I just eliminated junk food from my diet.- That's really good. I'm happy for you. Keep it up!

This is how went a short conversation I had recently with a colleague who, a couple of years ago, was one of the 25 people who attended the talk I gave at ESAC: Water, sugar, protein and fat. It could be (I'd like to imagine) that the talk was like a little seed in her mind that was what eventually grew into enough of a motivation to start what she had been doing for a few months already, making her feel really great about it, as anyone would, of course. And I'm really happy for her, and also very happy to possibly having been a little positive influence somewhere along the line.Another colleague stopped by my office in the spring to ask about the fitness club (a club to encourage people to exercise by subsidising part of the monthly membership to a great sports club close to where we work for which I was president for several years until a month ago or so). He mentioned in passing that he wanted to start doing sports in order to lose weight. Naturally, I immediately said that exercising wasn't really the key to fat-loss. He was surprised, as most people are when they hear this. Being interested and inquisitive about this point (he works as a scientist, after all), I gave him a 10-minute summary of the biochemistry of fat loss, and he left very motivated to start on his fat-loss programme.About one month later we crossed paths on the main road in front of the canteen. He looked much thinner: he actually looked quite trim considering that as little as four weeks before he not only looked but was definitely quite chubby.

- Things are going well, I see! You look like you've lost a lot of weight already.- Yes, I've lost 10 kg. Now, after the first four weeks, I've started to eat carbs again, but I'm eating 1500 calories and exercising every day. I started eating some complex carbs because I need energy.

I masked my internal cringing, and just said "well, you are much leaner than you were. Good job and keep it up!" But I thought: What in the world!?! How did he come to think like this after I explained to him how fat loss works, and which he seemed to understand? The thing is, he did cut out all carbs for four weeks---there's no way in the world he would have lost this much fat any other way---but for whatever reason, he now thought he should start again because he was exercising every day and therefore "needed energy". He really didn't understand the most important points I had tried to relate in that chat we had in my office. I am, in any case, very happy for him as well, because it is always better to be leaner than fatter, especially considering that a lot of the excess fat accumulating in our abdominal cavity is stuffed in between and all around our vital and digestive organs, putting constant pressure on everything in there, and that's really bad.Now, I would like to think that all of you readers of this blog already know what I want to point out and explain in regards to these two short fat-loss tales. Whether you do or not, I thought it was a good occasion to review the essentials of fat-loss in a quick and focused but more informal style than in other articles I have written. You are more than welcome to take a few minutes and try to guess what I'm about to explain about these two cases before moving your eye gaze down onto the first line of the next paragraph.Why did the first colleague I talked about lose so much weight? Is it because she started exercising? No. She never exercised and still doesn't. Is it because she starved herself on a low-calorie diet Weight Watchers style? No. She hasn't been hungry because she hasn't tried to eat a lot less, and has three meals a day without paying close attention to how much and is certainly not counting calories. Is it even because she stopped eating "junk food"? No, it's not. The reason why she has lost this weight seemingly so easily is only because she markedly decreased the amount of sugar she ate, which immediately translated in lower blood sugar levels throughout the day and night, which in turn translated into lower insulin levels also throughout the day and night. As insulin drops, fat-burning starts.Will she continue to lose her fat reserves indefinitely at this rate until there are none left? No, she won't: fat utilisation, and therefore fat-loss rate, is inversely proportional to insulin levels. So, the lower the blood sugar, the lower the insulin, and the lower the insulin, the faster the fat-loss rate. Because she still eats sugar in the form of starches, the sugar/insulin concentration will only sometimes drop low enough for fat-burning to start, and will not drop very low and stay there to allow the metabolism to fully adapt and settle into a stable and more or less constant fat-burning mode. She will remain in intermittent fat-burning and sugar-burning. Because her fat reserves are at this stage still very large (from the organism's perspective they are still effectively infinite), the relatively lower blood sugar for periods of several hours will prompt the body to continue to let go of these excessive fat reserves relatively easily until a steady state is reached and fat-loss stops. At that point she will still have plenty of excess body fat, but will be unable to lose any more without dropping insulin levels lower.Of course, eliminating junk food---mostly commercial sweets and fried stuff---and feeding ourselves with actual food, no matter what it is, makes a huge difference. This is definitely the very first step in any change of diet towards better health. That's obviously not something worth debating or even discussing. The point is that no matter what the changes in the diet, the biochemistry of fat loss is always the same, and it is the same for everyone. Everything is about insulin for the very simple reason that it is insulin that shuttles nutrients from the bloodstream into cells. This is true for sugar, protein and fat. But insulin is released by the pancreas primarily in response to the presence of sugar in the blood (but also in the absence of stress hormones which block insulin's action to retain the sugar in circulation as long as the "potential threat" remains). The gist of it is: high insulin---nutrient storage, low insulin---nutrient release; high insulin---fat storage, low insulin---fat-burning.What about the second colleague exercising and eating only 1500 calories that include starches and some fruit? He will continue to lose fat until the body determines that the bulk of the really excessive fat reserves have been spent, and then will stop. This will happen probably somewhere around 20% body-fat for guys and 30% for women, but will depend on age, exercise level, food, etc. So, he will get lean enough to appear slim, feel light, and also feel pretty good about himself every time someone compliments him on his figure. The more serious problem for him is that exercise, and especially the aerobic exercise like running that he is does to "burn more calories", breaks down muscle quite quickly but it is not rebuilt.The low calorie intake places the metabolism in calorie-deficit given that an average man needs about 1500 calories just for basic metabolic functions. This means that all additional calorie requirements have to come from somewhere other than the food that is eaten. Ideally, of course, these would come from fat reserves of which there are plenty; that's the idea of the low-calorie dieter. But this will and can only happen if insulin levels are at rock bottom: I mean 1--3 units. Otherwise, the body will cannibalise its muscles because it can most easily get the easiest-burning cellular fuel it needs by converting protein into glucose. And the result? Over time he'll lose most of his muscle, will retain that 15-20% fat, and will inevitably acquire the skinny-fat look. You know what I mean: the look of a slow, 40-50 year-old long-distance runner on a typical high-carb "runner's diet" who looks skinny but giggly, with barely any visible muscle and no definition at all: muscle tissue broken down and not rebuilt; fat reserves not used because insulin is too high.Had you guessed all that? Do you now understand how to burn fat without hunger and without losing muscle? Drop sugar levels, drop insulin levels: lose the fat reserves, keep the muscle. Eat fibrous veggies, lots of unprocessed fats and enough clean protein; don't eat any sugar or starch. Very simple.And here's a teaser for a future series: if you want to build muscle and maximally slow down ageing, you will---in addition to this kind of shift in diet---also start lifting weights: squats and dead lifts, bench press and overhead standing press, bent-over rows, dips and pull-ups; and the heavier and more strenuous the better!But if you've never done any of that, don't go out and start lifting as much as you can right away because you'll hurt yourself: you have to start slow, and have impeccable form and technique before starting to put on more weight. However, the fact is that there is really nothing more effective than heavy weight lifting to correct metabolic imbalances, postural problems, muscle and joint weaknesses; to burn fat, build muscle, and increase bone density; and totally rejuvenate the body and restore a incredibly youthful hormonal profile. The most amazing thing is that this is true for men and women of any age. I hope to find the time and write about this in the not-so-distant future.If you think this article could be useful to others, please 'Like' and 'Share' it.

Read More

Intensive natural healing

It is always very difficult to find out what's wrong, to find out what's causing our health problems, to find out what is the reason for the stroke or the heart attack we just had, the diabetes or the cancer we were just diagnosed with. It is always very difficult as long as we think of the body in terms of a collection of separate parts pieced together; as long as we think that it is possible for the arteries supplying the brain or the heart to have a pathology that is not shared by every other organ and tissue; as long as we think that it is possible for the pancreas, the prostate or the mammary glands of the breasts to be defective in their function independently of every other cell throughout the body. The moment we see this, we recognise the absurdity of this point of view and the obviousness of the inter-relation of every cell to every other cell, tissue, organ and system.There is only one whole body mind, and everything that happens to it affects everything else that takes place within it.Looking at things from this new perspective, there are always only two possible alternatives: healthy or diseased, ranging from one to the other on a continuous scale with every possible point in between along the line. From this perspective, every medical intervention or treatment that is not intended to correct or remedy something acute---to fix a broken bone, to save someone whose kidneys or liver just failed, to stitch up a wound to prevent the loss of too much blood---but instead attempting to address a chronic disease condition---treating heart disease, diabetes, cancer, arthritis, Alzheimer's, etc---is bound to fail.The failure comes from the misunderstanding that stems from the misguided premise that views the body as a collection of parts working to specific ends more or less independently of one another. If we are to ever overcome our health problems and thrive throughout a long and happy life, it is this basic premise---this misguided and erroneous premise---that must be thrown out and replaced by the clear understanding that there is only one whole body mind, and that everything in it affects and is affected by everything else.We are sometimes, maybe most often, faced with a major health issue that is acute because it is an end point to a degenerative disease condition that has been developing over decades throughout our entire life. Stroke and heart attack are good examples. Sometimes, maybe most often, it is these events that shake us up enough to move us into action, and if we have the luck to have been exposed to sensible information, we can have the chance to begin anew and change the course of the rest of our life, steering it towards recovery and optimal health.When an event of this kind happens---when we have a stroke or heart attack---we must act fast to recover as quickly as possible and reduce as much as we can the possibility of having another one within weeks or months, something that could easily be fatal. The fact is that this is usually quite likely to happen, and it's therefore important to take it to heart.How can we take the most important and extreme measures to reverse this course of progressive degeneration and set ourselves on the course to recovery as quickly as we can? What would I suggest should be done with the greatest sense of urgency based on the understanding that it is our life that is at stake? What are the most important and effective ways to help the body heal and repair itself?Cleanse, detoxify, heal the gut because everything that circulates in the body comes and goes through what circulates in the bloodstream, and everything that circulates in the bloodstream comes and goes through what enters the intestines. It is in the gut that everything about our health starts and ends, where all nutrients are absorbed and most metabolic wastes are discarded. This is why it must be the foundational focus of the healing process.There is no better way to cleanse, detoxify and heal the gut than to drink fresh green vegetablejuices while at the same time getting a series of colonics: the hydro-colon therapy cleans stuff out of the gut, the juice cleanses, alkalises and nourishes the blood and body. Doing these separately is very good. Doing them together is great. Give yourself two weeks---fourteen days---during which to do this. Every day drinking between two and three litres of fresh green vegetable juice, and every other day getting a colonic (on Monday, Wednesday and Friday, for example).For the juice, you can make it or buy it, but it must be cold pressed in a slow masticating juicer, and it must be free of sugar, i.e., containing only green watery, fibrous and leafy vegetables. Any amount of sugar will fuel the proliferation of pathogenic bacteria and yeasts like candida, and one of the most important aspects of this gut cleansing and healing is the elimination of the candida which undermines the function and health of our gut and our entire organism. In many modern cities there are small cold pressed juiceries where it is possible to buy very good quality all-organic green juice. Doing it at home is less expensive but requires you to do the work. You can also make some yourself and buy some as well (that's what I tend to do).In addition to the juicing and hydro-colon therapy, there are three kinds of supplements that should be taken: probiotics (Prescript-Assist is what I take), L-Carnosine (Paradise Herbs is what I take), and enzymes (I've used pHi-Zymes by Baseline Nutritionals and Heal-n-soothe by LivingWell). The probiotics replenish and heal the flora, carnosine helps heal the lining of the gut and glycated tissues, and the enzymes promote accelerated repair of damaged cells. They should all be taken three times a day, morning, noon and late afternoon, always on an empty stomach. Take each time one capsule of probiotics and two of L-Carnosine.To avoid being too hungry, but also to ensure an important intake of the miraculously healing coconut oil, you should have a coconut milk based smoothie, pudding or ice cream: a small glass, two or three times per day. And to make sure you have a good intake of salt and minerals, you should either put unrefined salt in the green juice or eat cucumber and celery sticks with salt, as much as you feel like depending on taste, once mid-morning and once mid-to-late afternoon. Sometimes you may want to drink salty green juice, and sometimes you may prefer to eat salty, crunchy veggies. Just follow your inclination.(See the work of Dr Norman Walker for more details about the importance of colonics and juicing.)Enzymes are proteins with specialised functions. They are the things that do stuff in the body. Most of us have heard that enzymes are made in the pancreas and are needed for digestion because they break down the nutrients into their constituents: starches are broken down into glucose by amylase, fats are broken down into glycerol and free fatty acids by lipase, and various proteins are broken down into amino acids by various proteases. These building blocks of foods can then be absorbed from the gut into the bloodstream and carried all over the body to where they are needed. But enzymes also do practically everything else that needs doing, and, in particular, heal and repair damaged cells and tissues.All raw foods contain enzymes, some more than others. Fresh juices which contain a high concentration of minerals and nutrients, also contain a high concentration of enzymes. Because the more enzymes are available, the better it is for the body to heal and repair itself. Hence, our strategy for recovering from this stroke, heart attack we just had, is to flood the body with enzymes. The fact is that in western countries, most people live on processed junk food that is not only totally devoid of minerals and micronutrients, but also completely dead and devoid of enzymes. If we don't survive on processed junk food, then we typically hardly ever eat anything raw. Therefore, even if the food we eat is not as bad as processed fast food, it is still cooked, dead and devoid of enzymes.Eating this way leads to two major problems. The first is that the pancreas is continuously manufacturing enzymes in a desperate attempt to cope with the digestion of cooked and dead food, and over time, like within a few decades, begins to get exhausted and eventually becomes unable to produce any enzymes. It typically also stops being able to produce insulin at the same time, just because it is simply exhausted. The second is that because all enzymes are used for digesting processed and cooked dead foods, there are hardly any enzymes available for anything else that needs doing, healing and repairing.In our healing programme, to flood the body with enzymes, we---in addition to drinking all this juice loaded with enzymes of all sorts---will supplement with more enzymes. There is no upper limit to the amount we can take, and the more the better. It is really just a matter of what we can afford and are willing to take on a short, medium and long term basis. It is important to start slowly and increase gradually. This is to allow the body to adjust to the presence of more enzymes, but also because they will immediately start their cleanup of the body, breaking down scared and dead tissues that inevitably accumulate over time, as well as both benign and cancerous tumours. The breakdown products are toxic and need to be eliminated quickly. Hence part of the importance of the initial 14 day juice cleanse with intensive hydro-colon therapy.The amazing thing about enzymes is that they know exactly what to do, what to break down, what to build up, what needs help repairing and what needs help healing. This can be considered a miracle of nature. But it is just life: the self-organised life of living organisms that has been evolving and having its means and methods refining themselves over the 4.5 billion years of evolution on the planet. Self-organised, synergistic and symbiotic co-dependent emergence and evolution. Miraculous and amazing, but from the perspective of an enzyme, a chloroplast or mitochondria, it is utterly simple, obvious and straight forward: adaptation for improved survival.(See the work of Drs Cichoke and Gonzalez for more on enzyme therapy.)Iodine is an element that is needed in every cell. According to statistics from the WHO, 97% of the world's population is iodine deficient. And according to David Brownstein, M.D., a physician who has spent a good portion of his medical career studying iodine, testing for it, and treating his patients's deficiencies of salt and iodine, the figure is probably closer to 98 or even 99%. In any case, this means that we can conclude that everyone should be supplementing with iodine to ensure the body an appropriate supply.Iodine is found in the highest concentration in the thyroid gland, mammary glands, and then other glands of the body. For all glands, but especially for the thyroid and breasts, it is simply crucial. Brownstein has treated with total success a large number of women suffering from fibrous cysts or cancerous tumours in the breasts, and a large number of both men and women suffering from thyroid-related dysfunctions using basically only iodine supplementation and dietary modifications (including, most importantly, increased unrefined sea salt intake). He states his belief that most if not all cystic breast disease and cancers, and that most if not all thyroid problems, regardless of whether they are hypo or hyper thyroid dysfunctions, are caused by iodine deficiency, and are always corrected with appropriate supplementation.One of the reasons why iodine deficiency is so problematic is that because it is so important in its role in every cell, and because it is part of the halogen family of elements (F, Cl, Br, I, At), it is replaced in the cells by other much more abundant but toxic halogens like fluorine, chlorine and bromine. All of these being common industrial chemicals far too abundant in our environment, water and food, and that find their way into the body, slipping into those slots in the cells intended for iodine. It is only by supplementing and providing the body with the adequate amounts it needs, that these other halogens can be gradually replaced by iodine and excreted from the body.Brownstein recommends using Lugol's solution, which is sodium iodine and iodide dissolved in water. It is generic and inexpensive, as it has been around for almost 200 years (first made in 1829), and it is a safe and effective way to replenish iodine stores. For most people (as it was for Brownstein himself and for me) it will be necessary to take 50--100 mg per day for about a year. It should be taken in water or juice on an empty stomach. I took it with water for many months before starting to put it in the green juice, in which the taste cannot be detected. I use a 15% solution (18.75 mg per drop) and took between two and four drops per day (37.5--75 mg; two drops at a time, once or twice per day).After almost a year, I felt two days in a row an immediate surge of energy and light butterflies in the stomach, which I knew were caused by the iodine stimulating the thyroid because I had read about it. Therefore, reacting to it with such sensitivity, I knew that I had finally replenished, after all these months, the iodine stores. Now, I take one drop in my green juice, which sounds like an infinitesimally small amount, but it is important to maintain supplementation because iodine is needed every day by all cells and it is water soluble making it easily excreted with the urine. It has been estimated by iodine researchers that the body needs a minimum of 12.5 mg per day. Therefore it is best to take a little more than that; one drop of 15% solution which provides 18.75 mg. Iodine is of fundamental importance. Supplementation with it is essential, especially in a detoxification and healing programme.(See Brownstein's book for more on iodine, and The Guide to Supplementing with Iodine, for additional details about supplementation)Magnesium and sodium bicarbonate support the cleansing, detoxification and---very importantly---alkalisation of the gut, blood, tissues and organs of the body. The easiest and most effective way to get these into the tissues is to have a 60 minute bath with one cup of nigari flakes and one cup of baking soda. You should do this every other day (Sunday, Tuesday and Thursday, for example) for the first two weeks. This will help pull out accumulated acid, chemical toxins and heavy metals. It is very pleasant and relaxing to lie in a hot bath for an hour reading a book, listening to music or just lying there quietly, adding hot water to maintain a comfortably hot temperature. It is also an essential part of the detoxification programme. After the first two weeks, you can reduce the number of baths to one to two per week.(See the work of Drs Dean and Sircus for more on magnesium chloride and sodium bicarbonate.)Eating for rejuvenation and optimal health is a matter of choosing between health and life or sickness and death. After these first two weeks, you will start to eat more solid foods, keeping the juice as the pillar of your new way of nourishing and taking care of the body. In fact, every day the focus of the first half of the day will be to hydrate, cleanse and alkalise by drinking green juice, one litre in two 500 ml portions, at around 9--10 and then 11:30--12:30. Lunch around 14 will be a green smoothie made of avocado and/or coconut milk, together with other green leafy veggies (kale, celery, cucumber, spinach, etc), and coconut water for the liquid part. You can add salt, black pepper and/or cayenne, other spices, superfood powders or extracts, making the smoothie as nutritious and tasty as you can using your resourcefulness to come up with new ideas and recipes.Having a smoothie of this kind provide lots of enzymes and nutrients, essential oils and excellent fats, together with the naturally occurring fibres but because they are chopped up and blended smooth, they are very easy to digest and thus cause very little digestive stress; this is second to juicing which removes all the fibres for maximum absorption of nutrients and minimum work by the digestive organs.In the late afternoon, have another green juice if it's possible. You should drink one to two litres of alkaline water per day, whenever you feel like it. (You can either buy it, making sure the pH is above 8, or you can add alkalising drops to your high quality filtered water. I use Young pHorever's PuripHy.) Remember that water and juice intake must be balanced with salt in order to hydrate well and not dilute the blood sodium levels and causing the kidneys to excrete more water. We want to drink lots and eat lots of salt in order to super-hydrate. For each litre of water/juice you need about half a teaspoon of salt.Stop drinking around 18 or so, approximately 45 minutes before dinner: a big leafy green salad of your choice (baby greens, baby spinach, romaine, oak leaf, kale, mixed lettuces and greens) with some nuts and seeds, plenty of cold pressed organic olive oil or some kind of nut or seed butter dressing, and with this big salad, have a small amount of grass fed meat or wild/organically raised fish every other night (one day on, one day off).That's it. This is how you should eat for all the months during which you are recovering until you are in perfect health and perfect shape. You can eat like this for the rest of your life. This is more or less what I do. Some variations, will include creamed vegetable soups with coconut milk in the winter (cauliflower, brocoli, celery, spinach), cold soups like gazpacho in the summer, different kinds of salads (celery-fennel, red cabbage, white cabbage, chopped up cucumbers, tomatoes and red peppers in the summer, soaked nut and seed parsley salad, etc), and different lightly steamed vegetables like brocoli, romanesco, cauliflower and green beans. Of course, you are welcome to experiment in this way depending on the season and on personal taste, mood and circumstances.Supplements that you should take as soon as you start eating, some with lunch and some with dinner, are the following.With lunch:(2) Liposomal Magnesium (L-Threonate; Mercola)(2) Liposomal Vitamin C (Mercola)(2) Krill oil (Mercola)(1) Astaxanthin (Nutrex Bioastin 12 mg)(2) Turmeric extract (Gaia Herbs)(1) Cinnamon extract (Stop Aging Now)(1) Tulsi extract (Source Naturals)(1) Vitamin B12 (Thorne Research Bio-B12)(2) A-D-K (DaVinci)(2) Niacinamide (Thorne Research)(2) Synergy7 (Stop Aging Now)(2) Zinc (Source Naturals OptiZinc)(1) Ubiquinol (Mercola)(1) Huperzine A (Source Naturals)With dinner:(2) Liposomal Magnesium (L-Threonate; Mercola)(2) Liposomal Vitamin C (Mercola)(2) Turmeric extract (Gaia Herbs)(1) Cinnamon extract (Stop Aging Now)(1) Vitamin B12 (Thorne Research Bio-B12)(1) A-D-K (DaVinci)(2) Niacinamide (Thorne Research)(2) Zinc (Source Naturals OptiZinc)(1) Ubiquinol (Mercola)(1) Iron bisglycinate (Thorne Research; depending on blood test results)You will have noticed the obvious absence of some classes of food products that are eaten by most people most of the time: there are no sugars of any kind and no starches, both of which are known to increase the probability of cardiovascular events by their instantaneous triggering of more than 300 inflammatory pathways, all of which cause the blood to thicken and become more viscous; there are also no dairy products, which are highly acidifying and usually the cause of negative immune responses from mild to severe intolerance or allergies; and there are no commercial foods or drinks, all of which should simply be avoided by everyone for their lack of nutrition and chemical toxic loads. These are detrimental to our health in several ways and therefore have no place in a healing programme or in a diet for optimal health and longevity.You will also have noticed that there is a strong emphasis on green juices and green vegetables, coconut fat from coconut milk, and just enough healthy and clean animal protein and fats to provide the body with everything it needs to thrive. It is perfectly fine to have berries either on their own or with coconut milk, as well as 80-85% organic chocolate once in a while (and not later in the day than about 15). You can have organic green tea in the morning (until about 12), but stop drinking coffee (if you're a big coffee drinker, you have to do this gradually). The adrenal glands---the very important stress and sex hormone producing glands---in this day and age are almost always overstimulated from our busy and stressful lifestyles, and therefore usually dysfunctional to a greater or lesser extent. They also need to be healed and for this, they need a break.You should continue the probiotics, L-carnosine, and enzymes as long as necessary to regain total health. You can continue indefinitely. You should continue the iodine supplementation with 50--100 mg per day for a year (might be anywhere between 8 to 12 months), after which you should reduce to one drop of 18.75 mg, and maintain this indefinitely. You should continue all supplements for as long as the healing process continues, and will benefit from taking them to the end of your days, reducing the quantity to once per day instead of twice (dropping the evening supplements with dinner), and remembering that there are only benefits from taking more depending on the circumstances in your life and your body's needs. Of course there are plenty of other supplements that we can be of benefit, but the ones listed are those that I consider most important.If you enjoyed reading this article, please click "Like" and share it on your social networks. This is the only way I can know you appreciated it.

Read More

One of Hitler's most devastating gifts to humankind

The Third Reich, under its Fuhrer's rule from 1933 to 1945, but especially during the second world war, was in more ways than those most obvious to us, masterfully devastating in the scope and effects that would have its scientific research programmes.One of the branches in which laboured a great deal of keen scientific minds was that of biological warfare with the use of poisonous chemical agents. What could be the most effective means to impede, disable, neutralise or completely remove someone's abilities to fight or even resist? It would be to sever the connection between the central nervous system and a vital organ: pretty simple and definitely very effective.German determination, dedication, focus, methodology and efficiency is well recognised and highly appreciated all over the world. This is true today as it was then, and if in this day and age it means to us more in terms of German technology---great industrial machinery and equipment, great cars, great appliances, great electronics---together with the fact that, on the world's stage, we can trust their government's word and commitment to seeing things through unwaveringly to the end, it certainly would have had a different connotation to the millions who suffered under the Germans during the great war, be it directly or indirectly. Regardless of these considerations, however, these qualities of determination, dedication, focus and efficiency are excellent qualities, well established in German culture and society, and obviously foundational in making the country a powerful and stable industrial and political leader.It was to be expected that those scientists tasked to identify, develop and refine the biological and chemical technologies necessary to accomplish their intended function of quickly, silently and as effectively as possible disable the human target without as much as a single drop of blood being shed in the process, was indeed accomplished, and masterfully so. The result was chemical agents that were called 'nerve gas'.Nerve gas worked exactly as it was intended: it broke the biochemical connection between the brain and the heart. More specifically, it inhibited the enzyme cholinesterase whose critical function is to break down excesses of the neurotransmitter acetylcholine that enacts the brain's messaging to the heart in order to avoid overstimulation. Acetylcholine is there to trigger the firing of neurons that control heart and bowel function. It sits in the synapses, the gap between neurons, and does this. The mechanism to ensure that there is enough but not excessive acetylcholine nerve stimulation, is the enzyme-depended breakdown of any surplus acetylcholine. Without optimal function of the enzyme cholinesterase, acetylcholine accumulates between neutrons and induces overstimulation, which can quite effectively bring the heart to a stop without bloodshed, without pain, without any noise, and without any drama: just quickly and effectively.How does nerve gas work today? Precisely in the same way it did in 1945. It was recognised early on in this research that most, and maybe all animals, no matter how large or small, share if not identical, very similar biochemical and hormonal pathways, especially in terms of nervous system function. Can you see where this is leading?The technological developments during the era of the second world war were tremendous: the planes, the cars and trucks, the tanks, the guns, the bombs, and all the physics and engineering, the chemistry and the biochemistry involved. It really was revolutionary in regards to the power available at our fingertips to do whatever we could imagine or whatever was needed to make things simpler, easier, more efficient. What came of all this was global, widespread use of large , complex machinery and global, widespread use of chemical for anything and everything we could think of.The shift from traditional family farming, which since it began 10000 years ago was always done on really very small scales, and naturally with the largest workable and sustainable variety of plant species being grown together, to the modern ways that could best accommodate the limitations imposed by using great big machines instead of our hands to tend the fields, gave way to huge monocultures, which in turn, gave way to huge problems with insects attracted to these particular species of plants being grown without the natural balancing effects of competing or antagonistic insects attracted to different plants growing side by side in the small space of the family garden.Just follow this impeccable human logic: nerve gas kills humans by blocking the action of the enzyme cholinesterase required to regulate the amount of stimulation triggered by the neurotransmitter acetylcholine that controls heart function by adjusting neuron firing and breakdown rate; all higher animals, including insects, have similar functioning nervous systems because we all evolved from the same primitive ancestors whose most essential function were controlled by their nervous system, whatever form it took; we want to cultivate huge fields of monocultures because it is efficient in producing large quantities of food without much time or labour by using large machines to take care of these field; unfortunately, large monocultures attract disproportionally large numbers of the same kinds of pests that then have free reigns over the plants cultivated because they have no other insects to compete against; insects are affected in similar ways as we are by nerve gas, but because they are much smaller, because we are so much larger and stronger than they are, they would be lethally affected by small quantities of nerve gas while we would not, or at least not very much.It's perfect! Amazing! We spray diluted nerve gas on our large mono-cultured crops, kill all these awfully annoying insects that are trying to eat our food, and then simply collect everything intact and in perfect condition. This is the magic of industrial chemistry. What do we call this diluted nerve gas, these chemical agents? Pesticides, of course. Very popular right from the start, but incredibly more popular today than 70 years ago.In fact, pesticides are more than 30 times more popular today than they were in 1945. Every year we dump more than four billion pounds of pesticides on the soil of the Earth. Four billion pounds worldwide, and one quarter of this---one billion pounds---is used in the US alone!As can be expected from our amazing human ingenuity, cleverness, tenacity and industriousness, there are now tens of thousands of different kind of 'nerve gases' with different purposes, different functions, different effects and different potencies. We are so darn good, so clever at improving things, making them longer lasting, more effective, more targeted, more concentrated, and naturally... more lethal.The obviousness of the truth is painful and so we look away: all pesticides are neurotoxic because this is how they function to kill pests. But since we are also a pest of sorts, they are neurotoxic to us in the same way as they are to those insects we want to get rid of. As a result, we are killing the insects, and we are killing ourselves. Moreover, we are doing it better and better each year and with every passing day. That's the long and short of it. Sorry to be the bearer of such bad news.Yes, we can eat our own home-grown stuff, and exclusively organic and pasture raised food---I do and have been for the last 18 years since graduating from McGill in the spring of 1996. But pesticides are in the rivers, oceans and water tables, as well as in the air, the clouds and the rain. And this, in ever-increasing concentrations. What we can do is try to protect ourselves as best we can by minimising our ingestion of and exposure to such poisons by all the means available to us, integrate continuous detoxification practices in our daily life, and do whatever we can to shift the balance of policymaking towards the support of small scale organic farming and away from the industrial monoculture model pervading over so much of the planet. Maybe the trends will change, and maybe sooner rather than later, but it's hard to tell.With the opportunity and truly great privilege we have to be alive and able to look back onto the past, and consider anew the circumstances, events and developments that took or might have taken place with a fresh perspective encompassing a multitude of informative elements available to us now but that were not at the time, I believe that nobody could have foreseen that the chemical technology of biological warfare agents developed during the second world war in Germany would become so incredibly popular as to pervade the entire planet to the extent of reaching virtually all ecosystems from the poles to the equator, up and down and all around to the most isolated and distant. And although seldom recognised as such, it is this, one could argue, that has had the most important and pervasive negative impact on humankind, one of the most devastating consequences of Hitler's lethally poisonous legacy: the gift of pesticides.If you enjoyed reading this article, please click "Like" and share it on your social networks. This is the only way I can know you appreciated it.

Read More

Is it really a fault in our stars?

All these stars, these countless stars we see in the sky at night, are the souls of little children waiting to be born. When a mom and a dad love each other and get married, a star comes down and an angel brings one of these little souls into the belly of the mom. Then, it grows into a baby and, after 9 months developing inside the mother, comes out and becomes a sweet little child like you.
childrenLookingAtNightSky

This is what my mother explained to me when I asked her where children came from. I don't know if this is a popular story, one that many parents tell their children when they ask them where they came from, but it is a sweet little story that happens to be far easier for a young child to understand than how things really happen. It also transmits a sense that each child, the life of each child, is magical and mysterious in origin, and therefore incredibly special. This is true: Life is magical, its workings are mysterious, and it is on the whole truly amazing.A few nights ago, on new year's eve, out son went to sleep over at a friend's house, to watch a film (2001 Space Odyssey) and ring in the new year. My wife and I stayed home and watched a movie together. We watched The Fault in Our Stars, Josh Boone's film of John Green's book that our son first read and then watched, and highly recommended.It is a touching story about two young people, Hazel-Grace and Augustus, that fall in love, with one another, deeply and sincerely in love. But their friendship lasted a very short while only because of Augustus's quick, and in some ways, unexpected passing away. Hazel and Gus met at a meeting of a cancer support group where he went to accompany his best buddy who had recently learned they were going to take out his second eye due to the spread of his childhood retinoblastoma, and where she went to please her mother who insisted she go to meet people with whom she would have at least one thing in common: her life-altering and debilitating childhood cancer.Hazel developed lung cancer when she was around 13, and lost one of the two lungs some time after that, and was, since then, living with a small oxygen tank she had with her at all times throughout the day and night, a little tube bringing oxygen into her nostrils, providing her with the oxygen she needed to survive. Augustus right leg had been amputated due to an aggressive cancer a few years back, but looked to be in very good spirits, an inspired and inspiring young man. I won't say anymore about the film because you really should watch it for yourself. It is very good.The picture that is painted of the world seen through the eyes of these young people is indeed very different from what most of us who do not suffer from serious illnesses are accustomed to. They know very well and unambiguously not only that their days are counted, but also that the end can come at any time, even without a moment's notice, today or tomorrow, next week, next month or next year, but surely and without a doubt about it. They know and have in the forefront of their consciousness the unavoidable fact they they are dying, that they are at the mercy of death.The truth is that this is also true for everyone everywhere. It's just that the perception of it and the timescale are different, or at least it tends to be: before being afflicted or diagnosed with a typically deadly disease like cancer, we tend to act and think that we will live forever, or at least for so long that it's really not relevant to consider how long because we'll be old and frail and our children will have families of their own, and our grandchildren will themselves already be grown ups, and on and on; after becoming seriously ill or receiving a crippling diagnosis, we immediately see the end, we see our end, as something actually really close to us, and, unfortunately unavoidable.Even if the film is very sad, it is also very inspiring, giving us, all of us who are still alive, so much to be thankful and grateful for. This is what I felt. And this is what I said to my wife as we were lying in bed before falling asleep, after the distant fireworks and local firecrackers had finally subsided: we are just so lucky, so incredibly lucky.For children like Hazel-Grace and Augustus, children who develop cancerous tumours in the womb already, in the first few years of life, or a little later, is something totally incomprehensible: how can such a thing happen at such a young age, or before even being born! What have they done to deserve this? This is not intelligible, not acceptable, simply not possible. Naturally, it can only be a 'fault in our stars', a fault in their stars. It cannot be anything else. It must be some kind of problem at the source, at the mystical, magical source of the life of these poor, unfortunate, afflicted children.This may be a way to help us accept the situation and just make the best of it for as long as possible, with strength, compassion and courage, but it is a lie. A romantic and poetic lie, but a lie nonetheless. The truth is that cancer is never, has never been, and never will be a 'fault in our stars', a stroke of bad luck, an unfortunate turn of events. Whether it develops while we are still in our mother's womb, when we are three, five, ten, thirteen, eighteen, thirty three, forty two or sixty nine, it is never due to chance.For cancer to develop two conditions must be fulfilled: there needs to occur an initial structural damage at the cellular level, and there needs to be a biochemical/immune environment that permits the subsequent development and evolution of the cancer cells. Without these, cancer cannot develop. Under optimal biochemical and immunological conditions and function, cancer cells that do appear for whatever reason are immediately destroyed, cleaned out and replaced by healthy cells.For unborn children, there is little doubt to be had that cancer can primarily be due to the mother's having been exposed either prior to or during pregnancy to carcinogenic agents: respiratory poisons, hormone disruptors or mutagenic substances. The embryo is so fragile and so vulnerable, especially to respiratory poisons because of its propensity towards glucose fermentation, that minute amounts otherwise unnoticeable by the mother can be enough to cause the formation and growth of what will turn out to be large tumours by the time the baby is born, often the case for retinoblastoma as in the case of Augustus' closest friend, and, as it happens, in the case of the daughter of a close friend of mine, the baby is usually born with at least one of the eyes' optic nerve covered in cancerous tumours, prompting the removal of the eye and nerve as soon as this is identified.Throughout childhood, the less mature child is always more vulnerable and fragile than the more mature individual, and this is always thus in relation to the maturity of the cells, tissues and organs of the developing child. Some cells and tissues are more vulnerable, like the brain, for example. But all immature cells are significantly more vulnerable than their mature counterparts. And knowing that all immature cells tend to higher fermentation rates, shouldn't it be considered the most reasonable approach to completely restrict sugars and carbohydrates at least until the child has reached the first stage in maturity at about 7 years of age, feeding them mostly fat in natural forms and chlorophyl-rich vegetables, keeping glucose and insulin as low as possible and thus ensuring that any damaged (pre-cancerous) cell relying on glucose fermentation will silently perish and be swept out before even the smallest cluster of such cancer-promoting cells has formed, let alone a full blown tumour, the smallest of which contain billions of cancer cells?Shouldn't it be considered only reasonable to just stop behaving so ridiculously irresponsibly towards ourselves, towards our children, towards our environment: the air, the soils, the lakes and rivers, the seas and oceans? To stop dumping so much chemical rubbish in our bodies, in those of our children and in the world all around us? It seems to obvious yet for some reason it isn't to most people, and certainly not to politicians and policy makers worldwide who seem to be precisely those least apt to make those decisions and formulate those policies intended to minimise damage and disease by restricting the production and release of poisons in air, water, soil and food.At least, at the very least, we have to stop feeding ourselves and our children foodstuffs that are devoid of nutrients and laden with sugar, chemicals and other man-made, denatured molecules like trans-fats and high fructose corn syrup. At the very least, we have to start simply drinking plain, pure and clean water: not juice, not milk, not soda or other sugary drinks, just water. We have to start eating fresh whole foods, those that don't have labels, that are not wrapped in plastic, and that do not come in box. And we have to just stop using chemicals in our showers, kitchens, in our homes and in our gardens.It's so simple, but I so often feel stupid saying and writing things of this sort just because is it so simple and obvious. And yet, it's amazing how rarely I encounter people who also see these principles as obvious. If you don't yet, please think about it for a while, and ask yourself this: what are, if not these, the most basic steps to take to ensure our own health and that of our children, those growing up around us and in our care, those curled up in the warm and cosy space of their mother's womb, and those yet unborn and not yet conceived either in thought or in actuality, those little stars shining silently in the night sky?If you think this article could be useful to others, please 'Like' and 'Share' it.

Read More

On the origin of cancer cells - part 2

Fifty years of intense research had passed from the year he received his doctorate in chemistry in 1906 to the year when On the Origin of Cancer Cells was published in 1956. The uniquely exceptional scientist that was Professor Otto Warburg was nominated for the Nobel Prize by his scientific peers a total of 46 times between 1923 and 1931, with 13 of these nominations in that last year. And in 1931, he was awarded the Nobel Prize for his seminal work on the essential role of iron in the biochemistry of cellular respiration published in 1928, and more generally for his work on the aerobic and anaerobic metabolic processes in cells. He was also, in that year, made director of the Kaiser Wilhelm Institute for Cell Physiology in Berlin (renamed Max Planck Society in 1948), and he maintained not only his post but also his scientific activity until his death in 1970 at the age of 86.

otto-warburg-old-highresfaceshot

In fact, in 1969, just months before his passing, he published with one of his long-standing collaborators Dean Burk who translated the text (as he did for the 1956 paper), a revised and additionally prefaced version of the lecture he gave at the meeting of Novel Laureates at Lake Constance, Germany, in 1966 entitled The Prime Cause and Prevention of Cancer. The tone of this lecture, both for the first part of 1966 and the second of 1969, transpires frustration and even anger at the general lack of notice and acceptance of the crucial elements of the physiology of cancer cells that he had studied, understood, elucidated and clearly described in his publications over the course of more than 60 years of research.Attempting to formulate a well-rounded and balanced explanation would require a lot of time and effort, not to mention a lot more words. But it is evident that then as now, financial interests have generally always been among the strongest driving forces both in research and in developing applications based on the understanding derived from this research. Hence, it is more than clear that eliminating the use of chemicals in all agricultural and industrial processes, stopping the consumption of simple and starchy carbohydrates and refined foods, and supplementing with iron, niacinamide and enzymes in general like Warburg recommended and did as a means to prevent and treat cancer is not only not at all lucrative, but it is highly financially detrimental to all chemical-based agricultural and industrial activities. I believe this is a most important part of the explanation, as it is for so many things.

What Warburg understood

Warburg had slowly, carefully, cautiously, diligently, painstakingly carried out experiment after experiment, trial after trial, studying every last detail of every aspect of the experimental process. He explained the cell's most vital function, that of respiration, using oxygen to burn glucose or fats and produce energy, with a particular focus on the critical role of iron as a 'respiratory enzyme' carrying the oxygen molecule. He explained that the glucose molecule was 'fermented' (that it underwent glycolysis) in the cytosol of the cell, split into pyruvate molecules and fermented to lactic acid, and that this produced a small amount of adenosine triphosphate (ATP) without the need or use of oxygen. This process is termed anaerobic fermentation.He explained that this process could either stop there, or be extended further by the pyruvate being taken up into mitochondria of the cell, and with the use of much oxygen, almost magically produce a lot more ATP without needing any additional glucose, but going through a series of steps and transformations relying primarily on clever recycling and reusing mechanisms of the niacin (B3) based molecule NAD (which stands for Nicotinamide Adenine Dinucleotide) within the mitochondria.The ATP-generating process taking place inside the mitochondria was eventually described in detail by one of Warburg's students, Krebs, who was awarded a Nobel Prize in 1953, and to which his name was given as the Krebs cycle also known as the citric acid cycle, as everyone who has studied some biology has heard (even if you never quite understood was this stuff was all about). Note that the Krebs cycle produces only 2 molecules of ATP, just as glycolysis does, and that it is what is called the electron transport chain, also taking place inside the mitochondria and using plenty of oxygen, that produces the bulk of the ATP with a potential of an additional 34 molecules, using products of the Krebs cycle, and in particular the 10 molecules of NADH.Warburg was motivated to understand at the most fundamental level what was the difference between healthy cells and cancer cells. Naturally, as cancer was already a devastating disease in the 1930's, he wasn't the only scientist working and leading researchers in the study of the mysteries of cancer. He was, however, one of the most talented, dedicated and productive, together with the group of scientists he led at the Kaiser Wilhelm Institute and those with whom he collaborated.The first major step was made in showing that tumours fermented glucose much more intensely than healthy tissues that normally hardly do so at all. This fact---that tumours ferment a lot more glucose than healthy mature tissues even in the presence of oxygen---is known as the Warburg Effect and is universally studied in physiology, medicine and oncology (cancer-ology). This fact is so fundamental to cancer metabolism as well as cancer research that it is the basis of the PET scan imaging technique in which radioactively labelled glucose is used to make detailed images of active tumours and their tendrils in our tissues. The reason why it works is that cancer cells take up glucose from the bloodstream far more efficiently than normal cells.What is unfortunate but not surprising given how myopic scientists and we all in general tend to be, is that this has been consistently overlooked as being a critical aspect of the genesis of cancer, as Warburg's research implied, and instead has been interpreted as a consequence of the dysfunctional cellular metabolism of these mutated cells that is unrelated to the actual development of the cancer.This is pretty absurd. After all, if cancer cells derive a substantial fraction of their energy from fermenting sugar, wouldn't the absence of sufficient glucose naturally halt the growth and proliferation, and thus the development of tumours? And even more fundamentally, because glucose can only be transported inside the cell by the action of insulin, and it is, in fact, to insulin---not glucose per se---that cancer cells are incredibly more sensitive than healthy cells, wouldn't an important drop in circulating insulin levels be detrimental or even lethal to cancer cells? Of course it would! They would be starved of the only fuel they can use, and as a consequence, eventually become incapable of sustaining their activity.

How was this measured?

The way it was done was to measure oxygen consumption and lactic acid production either with plenty of oxygen or without any, for tumours and different tissues under physiological conditions of pH and temperature. This is the perfect trick because fermentation outside the mitochondria does not require any oxygen, whereas energy production by glucose oxidation inside the mitochondria depends entirely on the presence of ample amounts of oxygen, In fact, even a minute drop in oxygen concentration will negatively affect mitochondrial ATP production. Cancer cells don't care much if there is oxygen or not: they don't use much and therefore don't depend on it. They ferment glucose anaerobically no matter what because this is the only way they can generate enough energy to survive.It was understood a number of years later that tumours are rather heterogenous both in terms of the types of cells and tissues they are derived from, and in the concentration of cancer cells: tumours can grow extremely fast or extremely slowly; they can have a large proportion of cancer cells in relation to normal cells or a small one; and since different specialised tissues require different conditions and function differently, it is an obvious consequence that tumours developing in different tissues will have different characteristics.Hence, the next step necessitated the isolation of cancer cells in order to avoid the problem of dealing with heterogeneous mixtures of cancer and healthy cells cohabiting in a solid tumour. It was this that Warburg presented in the 1956 paper, and what a difference this would make! These are his opening paragraphs:

Our principal experimental object for the measurement of the metabolism of cancer cells is today no longer the tumour but the ascites cancer cells living free in the abdominal cavity, which are almost pure cultures of cancer cells with which one can work quantitatively as in chemical analysis. Formerly, it could be said of tumours, with their varying cancer cell content, that they ferret more strongly the more cancer cells they contain, but today we can determine the absolute fermentation values of the cancer cells and find such high values that we come very close to the fermentation values of wildly proliferating Torula yeasts.What was formerly only qualitative has now become quantitative. What was formerly only probable has now become certain. The ear in which the fermentation of cancer cells or its importance could be disputed is over, and no one today can doubt that we understand the origin of cancer cells if we know how their large fermentation originates, or, to express it more fully, if we know how the damaged respiration and the excessive fermentation of the cancer cells originate.

This was the programme that in the end led to the discovery that cancer cells produced 2-3 times (that's 200-300%) more lactic acid than the most solid tumours. This meant that even those most solid tumours must have been composed of only about 1/3 active cancer cells, and thus 2/3 normal and inactive cancer cells.This is necessary because cancer cells cannot do the things needed for the tumour to survive and grow, like making new blood vessels for example; only healthy cells can carry out such specialised activities. The wildly fermenting and proliferating cancer cells are dependent on healthy cells in the tissue where they are growing in order to survive. This makes good sense given that cancer cells gradually devolve, generation after generation, losing their function, their specialisation and their differentiated nature, and eventually cannot do much of anything but ferment glucose and replicate. For this reason, they rely on the healthy cells to maintain a viable environment for them.

Oxygen is crucial

Recall a key observation that was made in comparing the metabolic activity of cancer cells to normal cells: as the cell transitions from functioning normally and deriving virtually 100% of its energy needs by burning glucose (or fat) with oxygen inside the mitochondria, towards the defective cancerous cellular metabolism characterised by fermenting glucose without oxygen outside the mitochondria, they derive progressively more energy from fermentation and less from oxidation, independently of the amount of oxygen available.You see, if oxygen in the cell drops, then ATP concentration drops because the mitochondria need the oxygen to make ATP. Immediately, fermentation outside the mitochondria will begin or increase in order to make up the energy deficit. This is normal and happens in all healthy cells whenever this situation occurs. However, the drop in available oxygen will also trigger heart rate and breathing to increase in order to make more available. This will very quickly correct the problem, allowing the cell to stop fermenting and return to the much preferred condition of generating ATP though oxidation in the little power plants that are the mitochondria. Once again, this is perfectly normal and happens in healthy, well-functioning cells every time we exercise.Those cultured cells with which they were working did not have the support of the entire organism that we have, exquisitely fine tuned and orchestrated by countless specialised hormones, sensor cells, worker enzymes, etc., to react instantly to any kind of chance of condition. As oxygen concentration dropped, fermentation increased. But if oxygen levels weren't replenished quickly enough, the damage to cellular respiration was found to be irreversible. Now, fermentation continued no matter if oxygen levels were raised to saturation following the period of hypoxia.Not only did fermentation continue under oxygen saturation, but it increased over time. This is what was meant by irreversible in terms of the damage to respiration sustained by the period of deficient oxygen levels, and this is what showed very clearly how a cell can transition and devolve from normal and healthy to cancerous. The same observations were made irrespective of the means that were used to damage respiration: arsenic, urethane, hydrogen sulphide and its derivatives, hydrocyanic acid, methylcholanthrene and whatever else, whether oxygen was deficient or prevented from reaching the cell by a respiratory poison, the result was irreversible damage that always eventually resulted in cancer cells if the damage wasn't too severe, because otherwise the cell would not survive at all.The unavoidable consequence of this was immediately understood: it is the cumulative effect of chronic exposure to small amounts of carcinogenic respiratory poisons or low-oxygen that causes and leads to cancer within our tissues. Very unfortunately for us, the number, spread and quantity of such carcinogens grows with each passing day. Is it any wonder then, that cancer rates are soaring? That it is a modern plague in our highly industrialised, pesti-cised, herbi-cised, fungus-ised and globally chemi-cised countries?

Measuring cancer cell metabolism

Quantitative measures of cellular activity and metabolism of ascites cancer cells were done keeping the cells in their natural medium, ascites serum, that was 'adjusted' physiologically once they were removed from the abdominal cavity. Adjusted how? By adding glucose to feed them, but also bicarbonate to neutralise the lactic acid, because the fermentation rate was so strong that without the bicarbonate the pH would drop too quickly and too drastically, causing fermentation to be brought to a standstill and soon after the cells to die.Under physiological conditions of pH and temperature, in units of cubic mm for 1 mg of tissue (dry weight) per hour at 38 C, they found the following:

  • Oxygen consumption: 5 to 10,
  • Lactic acid production with oxygen saturation: 25 to 35, and
  • Lactic acid production without oxygen: 50 to 70.

Warburg and colleagues estimated that in anaerobic glucose fermentation, one mole of ATP was produced for every one mole of lactic acid. In contrast, even though the exact details were not yet known, measurements indicated that in cellular respiration, 7 moles of ATP could be produced for every mole of oxygen that was consumed. Based on these estimates, they compared ATP production form fermentation and oxidation in different types of cells.Healthy liver and kidney cells showed identical metabolic values, consuming 15 cubic mm of oxygen per mg per hour, and in the absence of it, producing only 1 cubic mm of lactic acid. This means these cells were very poor at fermenting glucose; they could basically only derive energy from oxidation within the mitochondria. And this was made even more apparent by comparing, as they did, the amount of ATP that can be derived from fermentation or from oxidation. Using the 1:1 ratio of lactic acid to ATP under fermentation, and the 1:7 ratio of oxygen to ATP under oxidation, they found that these healthy liver and kidney cells could derive 105 (that's 15 x 7) moles of ATP from oxidation versus only 1 from fermentation. As a fraction of the total, this is 105/106 or 99.1% from the normal mechanism reliant on the Krebs cycle and electron transport chain inside the mitochondria.Next they looked at very young embryonic cells and found equal oxygen consumption of 15 cubic mm, but with a significantly greater---25 times greater---production of lactic acid when oxygen supply was cut. What this means is that these embryonic cells were much better adapted to surviving in anaerobic conditions without oxygen. This is quite natural given that the less evolved the cell, the more primitive and less specialised or differentiated, and therefore the closer to simpler cellular forms like yeasts. Doing the same as above in translating this metabolic function to compare the amount of ATP derived from either anaerobic or aerobic usage of glucose, we find that the same amount of 105 cubic mm of ATP from respiration, but in this case 25 moles of ATP from fermentation. And so, in this case the fraction is 105/130 or 80.8%, compared to the above 99.1% in normal liver and kidney cells.The difference between these numbers and those calculated for the ascites cancer cells was large: they consumed less than half the oxygen, 7 cubic mm, but produced a whopping 60 cubic mm of lactic acid. That was 60 times more than the healthy mature liver/kidney cells! Here, ATP derived from respiration was therefore 49 (7 x 7) compared to 60 from fermentation. Hence, the fraction of the total that could be derived from oxidation was a mere 49/109 or 45%, implying that more than half the energy requirements could be derived from fermentation. This is how these quantitative measurements on the metabolism of healthy and cancer cells were done, and the result was indeed a remarkable finding.

What these results explained

So many things were understood or clarified through his efforts across these five long decades of intense research, and now with these latest results we understood different cell types have different propensity to become cancerous based solely on the cell's inherent propensity towards fermentation: the higher the amount of ATP that could be derived from anaerobic fermentation, the easier it would be for the cell to become cancerous, and also the faster the tumour would grow.The unfortunate but unavoidable implication is that embryos whose cells are all immature and therefore more primitive and naturally prone to greater fermentation, are the most susceptible to sustain damage to respiration whether from periods of low oxygen (think asthmatic mothers) or from exposure to respiratory poisons (think anything from pesticides, herbicides, food preservatives, to just supermarket household 'cleaning' and skin 'care' products, synthetic perfumes or substances they contain, and on and on...). Here again we can ask: is it any wonder that infantile cancer rates are also on a sharp rise?We understand, for exactly the same reasoning, why cancer tumours in different tissues grow at different rates under the same physiological conditions, and easily explain why the increase in fermentation is gradual, requiring many cell divisions after the initial injury. As we know very well, it typically takes decades for adults to develop large cancer tumours that cause enough of an effect to get us to the hospital before it is diagnosed as such. Also, we know that tumours in or near the brain can develop and grow very quickly---within a year or two---whereas for the prostate they typically take an entire lifetime, sometimes completely unbeknownst to the host whose quality of life is not affected noticeably.It was also understood why radiation therapy was generally effective at reducing the size of solid tumours by killing those already weakened and energy deficient cancer cells through a final blow to their injured and struggling mitochondria. By the same token, however, radiation will also always damage mitochondria of healthy cells, and thus set them on their way towards the process of devolution into dysfunctional fermenting cancer cells that the injury to respiration brings about.And imagine this: 52 years following the publication of this landmark paper and a whole three quarters of a century after Warburg's discovery of the fermentation of tumour cells even in the presence of oxygen, was published in the journal Nature a paper entitled The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. In this paper the authors describe how they were able to manipulate the expression of this enzyme in cancer cells, and doing so, decrease fermentation while increasing oxidation of glucose.This enzyme, pyruvate kinase, is expressed in mammals in four different flavours (isoforms): L is expressed in liver cells, R in red blood cells, M1 is by far the most dominant and is expressed in most adult tissues, and M2, a variant of M1, is expressed during embryonic development. As it turns out, and as reported by two other groups of researchers in 2005 (refs 2 and 7 in the 2008 Nature paper), tumour tissues exclusively express the embryonic M2 form of pyruvate kinase.Expressing these results as simply as we can, the situation appears to be as follows: once a glucose molecule enters the cell through one of the insulin-mediated entry ports, it is in the cytosol. There, through a series of 10 enzyme-mediated steps, it is split in two molecules of pyruvate. This requires 2 ATP but produces 4 ATP molecules; hence there is a net production of 2 ATP. At this stage pyruvate can either be converted to lactate which then turns to lactic acid, or to acetyl-CoA which is then transported to the mitochondria to enter the Krebs cycle and the electron transport chain. This transformation of pyruvate is performed by the enzyme that is the subject of these scientists' investigation, pyruvate kinase. It would seem that the M1 form, the one that is active in healthy cells, takes pyruvate into acetyl-CoA and into the mitochondria, whereas the M2 form, the one that is expressed in embryos and cancer cells, takes it into lactic acid.By some clever genetic manipulation, working with tumours in rats, they were able to switch off M2 expression and switch on M1 expression in cancer cells, and measured a decrease in lactic acid production and an increase in oxygen consumption that was associated with ATP production in the mitochondria through oxidative phosphorylation. This is the remarkable result that made the paper worthy of a publication in Nature magazine. And it is indeed amazing! This is why they write in the first paragraph that based on their research, the defect is not with the mitochondria as Warburg thought, but rather it is with the expression of the enzyme pyruvate kinase that goes from the healthy M1 to the embryonic M2 form. Why or how this happens is unknown.This is indeed very encouraging! Just the idea of being able to force the expression of the healthy M1 and suppress the cancerous M2 form of pyruvate kinase is really amazing and has very important potential implications for cancer prevention and treatment. And this even if we don't really yet know why or how it happens. But tell me, have you ever heard of this more than critically important result in cancer research on the news? Do you think your doctor has? Or his oncologist colleagues that cut, poison and burn cancer patients day in and day out?

Our basic cancer-fighting strategy?

What can we gather from this work that can help us not just understand Warburg's research and his remarkable contribution to humanity though it, but also avoid cancer in this world where more than 1/3 of people currently succumb to it and where cancer rates keep rising every year?Naturally, we want to minimise as much as possible our exposure to all manufactured chemicals, especially those confirmed as carcinogenic. We are all exposed to a greater or lesser extent through our being immersed in the environment in which we live, but we can go a long way by eating the cleanest, most natural and unprocessed food possible, drinking the cleanest water possible, using only natural cleaning and skin care products, and using regular or daily detoxification strategies such as taking sodium bicarbonate and magnesium chloride baths one to three times a week, drinking psyllium husks in water to cleanse the colon, and supplementing with iodine, chlorella and spirulina daily to flush out chlorine, fluorine, bromine and heavy metals like lead, mercury and arsenic on a continuous basis. These are, in a way, the simplest and easiest preventative measures we can take to reduce as much as we can our exposure to external sources of potentially carcinogenic and otherwise dangerous substances, as well as do what we can to flush them out to prevent accumulation in our tissues.In consideration of the two fundamental characteristics of cancer cells---that they rely on glucose fermentation, and that they live and thrive in a milieu that his highly acidic and deprived of oxygen---it is just common sense to conclude that doing the opposite of what they need and prefer would be a good strategy. Doing the opposite means minimising glucose availability and especially insulin that is ultimately the agent responsible for transporting the glucose into the cell; remember that this is why cancer cells typically have 10 times the number of insulin receptors on their surface than normal cells. Doing the opposite also means preventing the accumulation of metabolic acids in their subsequent storage in tissues, preventing latent tissue acidosis, and ensuring a plentiful oxygen supply from a highly alkalising drinks, foods and lifestyle.The first can be achieved by eliminating all simple and starchy carbohydrates, refined or not. Blood glucose levels will drop, and insulin levels will follow suit. This will shift the metabolism towards relying on fat as the primary source of cellular fuel throughout the day and night, day after day. The cool thing is that healthy cells function much more efficiently by burning fatty acids in the sense that they derive a lot more energy than they can do from burning glucose, even if the later is easier and enzymatically simpler: it is, after all, common to all living organisms, including the most primitive. The important difference is that all evolved and highly specialised animal cells can use fat, whereas primitive or devolved cancer cells simply cannot.The second can be achieved by keeping the body hydrated and alkaline by drinking and eating to promote the alkalisation of the digestive tract, the blood, the other fluids of the body, and thus the tissues throughout: alkaline water and pressed lemon water, highly alkaline and alkalising freshly cold pressed green vegetables both juiced and whole, and magnesium chloride and sodium bicarbonate baths. Eating plenty of unrefined sea salt is also of the utmost importance in this. These are among the most important and effective means to first pull out and eliminate stored acids from the tissues and body, and then maintain alkalinity.The only caveat is that digestion of concentrated protein in animal food, for example, require an acidic stomach for complete breakdown and digestion. Therefore,we should not combine alkalising water, lemon water or green juice when eating protein because this will cause poor digestion and absorption. Also, because protein is very important but also highly acid-forming, it is essential to not have excessive amounts, especially in a single serving, because this will cause excessive acidification and toxicity. Restrict your servings of animal protein to about 30-50 grams per serving, and try to restrict that to one main meal in the latter part of the day (afternoon or evening).Pretty simple, aren't they, these two strategies that we can draw from what we have learnt about cancer up to now. We will further explore cancer metabolism, prevention and treatment in the future, looking at methods that have been and continue to be successfully used to treat cancer patients and bring them back to health, as well as important nutrients and supplements with powerful cancer-fighting and health-promoting properties. But the fact is that these two basic points that address the most fundamental characteristics of cancer cells to ensure, on the one hand, that those that do emerge one way or another cannot sustain themselves or grow due to the lack of enough glucose and insulin for their needs, and on the other, cannot readily develop from being pushed towards fermentation because the environment of the body is everywhere alkaline and oxygen rich, are probably the most effective and important measures to grasp and apply in order to remain optimally healthy and cancer-free for as long as we are alive.

In closing

Before closing I want to briefly highlight that the vast majority of effective natural cancer healing treatments are based to a greater or lesser extent on the understanding of cancer as I have presented it in this and the previous article on the subject. However, there is a truly wide range of successful treatments that are used out there in various specialised cancer treatment centres. One important point to make in regards to the consumption of simple sugars from sweet root vegetables such as carrots and beets or fruit is that several treatment protocols include these and in sometimes large quantities still with great success in overcoming cancers of various kinds. This shows us that there is definitely more to preventing and treating cancer than just eliminating simple sugars.There is lot of tremendously interesting material to explore about cancer, a disease that has been an important cause of suffering for at least a century. A lot of this exploration will be of historical research, experiments and discoveries that either have escaped the attention of the masses and medical establishment, or been actively suppressed by various agencies and individuals intent on nurturing as substantial population of ailing people for the purpose of profiting from the treatments they would require.As awful as this may seem, it is unfortunately the sad truth. And even more unfortunately, this is not only historical as in the case of this well documented 1921 action plan by the US government, FDA and AMA for an influenza vaccination campaign to quickly and effectively spread disease across the country and greatly stimulate the need for medical attention and case as a means to generate profits from the associated expenses, but this continues to this day. The essential conclusion to draw from this is that it is we who must care for ourselves, our children, our family members, and our friends. And to do this, it is again we who must first learn and then teach our children and each other how to best do it. This is what I strive to do and what I strive to share with you.If you think this article could be useful to others, please 'Like' and 'Share' it.

Read More

Reversing diabetes: a four-week programme

The key factors of the process of reversing diabetes are: dropping blood sugar concentration and keeping it low, dropping insulin concentration and keeping it low, and alkalising the blood, fluids, tissues and organs---especially the pancreas, to eliminate accumulated acids and reverse the physiologically debilitating effects of chronic acidosis so common to diabetes.We have examined both the process of developing and that of reversing diabetes in several previous articles. Now, we present a detailed four-week programme to put things into practice, begin recovering correct metabolic function, and get you on your way to ridding yourself of diabetes, if this happens to be a condition from which you are already suffering, towards which you are moving, or simply want to make sure it never develops.As you will see, beyond the manipulation of the biochemistry through what is consumed, there are in addition several tweaks that are employed to ensure the best possible response to and outcome of the programme. These have mostly to do with timing: when we do things, when we drink, and when we eat. But also include important supplements (in addition to other ones you are taking like B12, ubiquinol, etc); as well as physical exercise, and specific types of exercise done under specific conditions.The programme is constructed based on a four-week period because this is the amount of time that is needed, in the majority of cases, for the hormonal system to rebalance itself around the much lowered insulin levels, and for the cells and metabolism to regain insulin sensitivity and switch from using glucose and breaking down muscle tissue to satisfy energy needs, to instead use primarily fat, and naturally, as we would expect, the fat stored in the body's adipose tissues throughout, which means sub-cutaneous---the fat that sits under the skin, intra-abdominal---the fat that is between the various digestive organs in the abdomen, and even the fat that is stored inside the tissues of organs like the liver and heart, and in the muscles themselves.It is very important to understand, however, that even though the startup programme lasts four weeks, it is a transition period and a complete re-education that marks the beginning of a different way of doing things in order to first allow the body to heal itself and for you to regain your health, and then to maintain and refine this state of health over the course of the rest of your life.It is also very important to understand that what leads and has led you to a diabetic or pre-diabetic condition are factors related primarily to diet and lifestyle, which if adopted by most will cause similar metabolic dysfunction, and obviously, if adopted anew following this four week programme will inevitably lead back to diabetes, and all that much faster for those whose system has already been compromised by the years and decades that led to this metabolic dysfunction in the first place.Therefore, you must absolutely understand that this is a four-week programme intended to correct major imbalances and dysfunction and get you on your way to reversing your diabetes and tuning your metabolism to efficiently run on fats as the primary cellular fuel. But that it is also intended to re-educate and teach you a completely new way of doing things on a daily basis in order to empower you in knowing what to do to be and remain in perfect health, why you do what you do, and why it works on a physiological and biochemical level.Lastly, because of its strict timing and numerous elements throughout the day on a very regular schedule, you have to make this programme a priority, and, ideally, make it your primary activity during this period. You will probably find it close to impossible to follow if you are trying to maintain other demanding and time consuming activities like a full time job at the same time. So, just take a break from everything else, and concentrate on your health for a month. Afterwards, once many of these new ways of taking care of yourself have become more habitual, you will find it far easier to maintain a similar routine while working and doing other things simply because it will be far more natural for you.

The first five days

Background

For maximal effectiveness, we start with a period of intensive cleansing and alkalisation during which the key nutritional element is fresh juice of green vegetables, and the sources of calories are restricted to coconut oil, coconut milk, coconut flesh and milled chia seeds. Like a traditional juice cleanse, everything that is consumed is raw and therefore living, enzyme rich, and easily absorbed with minimal digestive stress; and nothing is acid-forming and acidifying, for this would defeat one of the fundamental purposes of the healing protocol which is essential to restore correct pancreatic function.Highly unlike a traditional juice cleanse, however, there are virtually no simple sugars consumed and entering the bloodstream, and there is a significant amount of fat, almost all derived from coconut oil. This serves several purposes: it provides the metabolism a perfect fuel for cellular function that is easily broken down and generally not stocked away in fat cells; it enhances the production of ketone bodies necessary to fuel the brain in the absence of glucose, at the same time helping heal and repair the brain by promoting the evacuation of plaques from cerebral arteries and thus increasing blood flow to these starved brain cells; it maximises the absorption of the rich array of minerals, antioxidants and phytonutrients in the green juices; and finally, but also importantly, it very effectively suppresses hunger.During this period the body will quickly and efficiently make the metabolic transition from using exclusively glucose as is always the case in diabetics and insulin resistant individuals, to burning fat reserves as the cellular fuel of choice; significantly decrease the level of systemic inflammation and release several kilograms of the water that is retained under conditions of chronic inflammation and insulin resistance, in great part responsible for hypertension, swelling of the joints and extremities, and poor blood circulation; thoroughly alkalise, cleanse and begin to rejuvenate, heal and repair the vital digestive organs: the stomach and intestines, and the kidneys, pancreas and liver; alkalise the blood and eliminate large amounts of accumulated acids stored throughout the body in the joints, soft tissues and muscles.All of these processes are very physiologically tiring. For this reason it is important to rest in the afternoon, and have long nights of deep sleep every night. Hence, only walking is recommended as a form of exercise during this period, ideally in the morning (between 9:00 and 10:00) and in the evening after the last meal (anywhere between 20:00 and 22:00).

Detailed schedule

Here is what and when to eat and drink during this period (times can be adjusted slightly according to sleep patterns):

8:00-9:00 (or upon getting out of bed) - Water and Mg oil

  • Put on Mg oil all over the legs, arms, chest and abdomen, shoulders and back (as best you can). Leave on for at least 30 minutes before showering.
  • Large glass of plain water (400-500 ml)
  • Supplements:
  • Proteolytic enzyme complex (3; Baseline Nutritionals)
  • Spirulina (3; Nutrex) / Chlorella (5; Healthforce Nutritionals)
  • Tulsi extract
  • Lugol's iodine solution (in water; 5%: 6 drops, 15%: 2 drops)
  • ATP Cofactors (Optimox)
  • Probiotics (Prescript-Assist)

9:30-10:00 - Green juice and chia seeds

  • Glass of water with milled chia seeds (1 flush tablespoon)
  • Green juice with coconut oil (1 tablespoon, melted and emulsified with hand-held blender)
  • Supplements:
  • Niacinimide (2)
  • Turmeric (powdered (2) or extract (1))
  • Cinnamon (powdered (2) or extract (1))
  • Krill Oil (2; Mercola)
  • Astaxanthin (Nutrex)
  • A/D/K2 (DaVinci Laboratories)
  • Zinc (MegaFood)

11:30-12:00 - Lemonade

  • Lemonade: 1 medium (or 2 small) pressed lemon, 1/2 tsp salt, 2 mini spoon stevia in 500 ml of water.
  • Vitamin C: 1/2 tsp with small amount of water, stir until fizzing stops, fill small glass half way. (Ultimate Ascorbate C Powder by Source Naturals mixed with highest quality, food grade, powdered sodium bicarbonate in ratio 2:1)

12:00-12:30 - Salty veggies

  • Cucumber, kohlrabi or celery with salt
  • Supplements:
  • Enzymes (3)
  • Spirulina (3) / Chlorella (5)
  • Tulsi
  • Lugol's
  • ATP Cofactors

13:00-13:30 - Green juice and coconut milk pudding/ice cream

  • Green juice without coconut oil
  • Coconut milk pudding (blueberry, raspberry, blackberry or cacao-chia)
  • Supplements:
  • Niacinimide (2)
  • Turmeric (powdered (2) or extract (1))
  • Cinnamon (powdered (2) or extract (1))
  • Krill Oil (2)
  • Astaxanthin
  • A/D/K2
  • Zinc

14:00-15:30 - Sleep

Sleep (very important for the first 5 days that will be very tiring for the body in terms of cleansing and repair)

16:00-16:30 - Water

  • Large glass of water
  • Supplements:
  • Enzymes (3)
  • Spirulina (3) / Chlorella (5)
  • Probiotics

16:30-17:00 - Green juice and chia seeds

  • Glass of water with milled chia seeds (1 flush tablespoon)
  • Green juice with coconut oil (1 tbs melted)
  • Supplements:
  • Niacinimide (2)
  • Turmeric (2)
  • Cinnamon (2)

18:00-18:30 - Lemonade

Lemonade and Vitamin C (as above)

19:00-19:30 - Salty veggies

  • Glass of water with milled chia seeds (1 flush tablespoon)
  • Cucumber, kohlrabi or celery with salt
  • Supplements:
  • Enzymes (3)
  • Spirulina (3) / Chlorella (5)

20:00-20:30 - Green juice and coconut macaroons

  • Green juice without coconut oil and coconut macaroons (but not with cacao).
  • Supplements:
  • Niacinimide (2)
  • Turmeric (2)
  • Cinnamon (2)

22:00-22:30 (just before bed) - Psyllium and charcoal

  • Large glass of water with psyllium husks (2 rounded teaspoons, mixed and allowed to swell for a few minutes)
  • Supplements:
  • Charcoal (Source Naturals)
  • Valerian root extract (Bluebonnet Nutrition)
  • NightRest (Source Naturals)

Beyond the first five days

Background

At this stage, the body will have undergone a radical transformation biochemically and physiologically from the inside out. Most noticeable will be the loss at least 4-6 kilos of water (about 2 kg) and fat (about 2-4 kg), with the accompanying feeling of being much lighter and thinner at the waste with a deflated abdomen and gut. The digestive system will have experienced a very effective cleansing and bowel movements will be noticeably more regular and quite different in texture, smell and sensation. The smell and volume of both urine and sweat will have evolved markedly during this period. And all the vital digestive organs will have been given a powerful boost and rejuvenation, but this cannot really be felt. You should as mindful as possible of all of these details and everything else you can notice over the course of the first five days. This will give you a much deeper appreciation of the process and of its importance in regards to your moving towards better health.We can now continue with a regime that includes two green juices per day instead of four, dropping the afternoon green juice, and replacing the evening green juice by a large green leafy salad with small amounts of nuts, seeds or fish (sardines, anchovies or wild smoked salmon, for example). We will also reduce quantity and frequency of supplements.In addition, we will introduce a component of exercise that is absent in the first five days, which will greatly enhance the body's response to the new regime and metabolic environment. The exercise will take the form of fast walking with very light weights for strengthening the shoulders and arms, Pilates workouts to develop strength in the core muscles (abs and back) for postural balance, high intensity interval training coupled with resistance as well as cross-fit training with weights to increase cardiovascular and metabolic efficiency, fat and glucose utilisation, muscle mass, done density, and tendon and ligament strength and flexibility.

Detailed schedule

8:00-9:00 (or upon getting out of bed) - Water and Mg oil

  • Put on Mg oil all over the legs, arms, chest and abdomen, neck, shoulders and back (as best you can). Leave on for at least 30 minutes before showering.
  • Large glass of water (400-500 ml)
  • Supplements:
  • Proteolytic enzyme complex (3)
  • Spirulina (3) / Chlorella (5)
  • Tulsi extract
  • Lugol's solution (in water; 5%: 6 drops, 15%: 2 drops)
  • ATP Cofactors
  • Green tea extract
  • Green coffee bean extract
  • Probiotics

9:00-9:45 - Walk

Fast walk with 1 kg weights in each hand, using them to do shoulder rotations, biceps curls and triceps extensions while walking.

10:00 - Green juice

  • Glass of water with milled chia seeds (1 flush tablespoon)
  • Green juice with coconut oil (1 tbs, melted and emulsified with hand-held blender)
  • Supplements:
  • Niacinimide (2)
  • Turmeric (powdered (2) or extract (1))
  • Cinnamon (powdered (2) or extract (1))

11:30-12:00 - Lemonade

  • Lemonade and Vitamin C (as above)

12:00-12:30 - Salty veggies

  • Cucumber, kohlrabi or celery with salt
  • Supplements:
  • Enzymes (3)
  • Tulsi
  • Lugol's
  • ATP Cofactors
  • Green tea extract
  • Green coffee bean extract

13:00-15:00 - Workout

  • Resistance and high intensity interval training on Mondays
  • Pilates on Tuesdays, Wednesday and Thursdays
  • Cross Fit training on Fridays
  • Rest on Saturdays and Sundays

15:00-:15:30 - Gren juice and coconut milk pudding (or ice cream)

  • Green juice without coconut oil
  • Coconut milk pudding or ice cream (blueberry, raspberry, blackberry or raw cacao and chia)
  • Supplements:
  • Niacinimide (2)
  • Turmeric (2)
  • Cinnamon (2)
  • Krill Oil (2; Mercola)
  • Astaxanthin (Nutrex)
  • A/D/K2 (DaVinci Laboratories)
  • Zinc (MegaFood)

15:30-16:30 - Sleep

Sleep (highly recommended; optional after the first five days)

16:30-17:00 - Water

  • Large glass of water
  • Supplements:
  • Enzymes (3)
  • Spirulina (3) / Chlorella (5)
  • Probiotics
  • Green tea extract
  • Green coffee bean extract

17:30-18:00 - Lemonade

Lemonade and Vitamin C (as above)

18:00-18:30 - Salty veggies

Cucumber, kohlrabi or celery with salt

19:00-20:00 - Green juice, salad and coconut macaroons

  • Green juice without coconut oil (then wait 30 minutes)
  • Green leafy salad with oil and salt (no vinegar), and small amount of either walnuts, anchovies, sardines or salmon (smoked, grilled or pan fried)
  • Coconut macaroons for dessert.
  • Supplements:
  • Niacinimide (2)
  • Turmeric (2)
  • Cinnamon (2)

22:00-22:30 (just before bed)

  • Supplements:
  • NightRest
  • Valerian root extract

Concluding remarks

This is a programme designed for reversing type II diabetes, and will, without any doubt, do exactly this. What might vary from one person to another is really only the time that will be required to recover ideal insulin sensitivity.It is important to appreciate, however, that it would be just as effective in treating any kind of degenerative condition like arthritis, but also atherosclerosis of the coronary or cerebral arteries, and arteriosclerosis due to the accumulation of calcium in the tissues; kidney or liver disease but also pancreatic fatigue or dysfunction; stomach and peptic ulcers, but also candida overgrowth and infection, as well as leaky gut syndrome; and of course, probably the most fearsome of them all---cancer.Why? Because all health problems and disease conditions stem from biochemical and hormonal imbalances, and metabolic and physiological dysfunction. Therefore, in order to either prevent or correct any one problem, all problems must be prevented and corrected. For some of us---very few of us indeed---this is plainly obvious. It is, however, also obvious that this understanding is definitely absent---conspicuously and painfully absent---from modern conventional health care, no matter what it is intended to treat and no matter where we look.Hence, it is my hope that this programme will not only help diabetics and pre-diabetics permanently reverse their diabetes and all the associated problems related to the underlying metabolic dysfunction, but also help all those who wish to treat whatever health concern they may have, as well as those who wish to prevent any such health problems from developing.The only way to develop and nurture optimal health is for every cell, organ and system of the body to function optimally. Therefore, this is what we must do, and that's the bottom line. Good luck with the programme. Naturally and as usual, you are welcome to post you comments, questions and observations, especially those from your experience with the programme. I would be very happy to hear from you.If you enjoyed reading this article, please click "Like" and share it on your social networks. This is the only way I can know you appreciated it.

Read More

Why do diabetics have high blood pressure?

This is the question that someone in the audience asked at the end of a presentation on diabetes that I attended a few months ago. Remarkably, the speaker was unable to answer this question. Amazingly, neither could any one of the three medical doctors that were in attendance. I was, naturally, quite shocked by this obvious display of ignorance on all of their part. At the same time, I wasn't really surprised, and, in fact, relieved to be vindicated in my belief that probably the majority of MDs don't understand the most basic things about human physiology and metabolic function.Now, you, on the other hand, you who has been following and reading this blog, might (or even should), I believe, be able to answer that question. But since you're reading this, and therefore cannot be put on the spot, as was the speaker and those MDs at that presentation, you don't have anything to worry about if you can't. And yes, I am going to explain. On top of that, I'll be as quick as I can about it.As always, first things first: How is blood pressure regulated? What is it that does the regulating? And why is it important?Blood pressure regulation is of the utmost importance for the proper functioning of every organ because every cell in the body depends on a properly functioning circulatory system to bring nutrients and carry away waste. Blood pressure is like the voltage that drives current through wires and electronic components: it is a driving force. And exactly like it is for electric and electronic devices, the driving force must be just right: it cannot be higher and it cannot be lower than what it needs to be in every moment depending on what the immediate circumstances and needs happen to be. Therefore, blood pressure regulation is essential for the moment to moment adaptation of every metabolic and physiological function, to the different activities we do, and circumstances we find ourselves in.The main organ responsible for blood pressure regulation is the kidney. I use the singular because the two kidneys work in the same way. It's just that their function is so vitally important that there are two of them, most logically for redundancy, as a fail-safe system. I have written at length about kidney function in two articles entitled The kidney: evolutionary marvel; and How much salt, how much water, and our amazing kidneys. By the way, this is what I meant earlier: if you've read those, understood and happen to remember a few essential bits, then you would be in a good position to answer the question as to the relationship between diabetes and blood pressure. Here it is in a few words; well, maybe a few paragraphs.The kidney's vital role is filtration of metabolic acids out of the blood, and elimination of these through the urine. To do this as best it can, because the first and most important part of the filtration process relies on the separation of the liquid from the solids in the blood, and because this is done through what is a mostly "mechanical" filtering through a membrane as it is in water filters, the kidney must maintain optimal pressure to ensure optimal function of the little filtering units, the nephrons. If pressure is too low, the membrane filtering does not work well. If pressure is too high, the membrane tears or pops, and the filtering units stop working altogether.The good news is that damaged nephrons can sometimes recover when the conditions are made conducive to it, and that there are millions of them in each kidney. The real bad news is that when they die, they do not come back to life. Another bit of bad news, although some would surely take this as good news instead, is that this process of deterioration of kidney function and death of nephrons takes place gradually but silently over the years and decades of our life. When the consequences of poor kidney function become noticeable or even critical, and we finally go see our MD because we're not feeling good, or worse, are brought directly to the emergency room, it is far too late, for most of the nephrons are already dead.And to be perfectly clear on this, if the kidneys fail and we don't get immediate attention and artificial filtering of the blood through dialysis, we die within hours. This is what is meant by the word vital when qualifying the kidney as such an organ.As I often highlight, the cells, tissues and organs that constitute the entirety of the body that we erroneously call ours and mistakenly believe this to be the case, do not care about you in the least. They do not know anything about you and never will. They, as all living things, are only concerned with survival and self-preservation. It is for this reason that they continually adapt in all sorts of ways to the environment in which they find themselves: this is the internal environment of the body. And it is for this reason that the kidney regulates blood pressure so accurately and so well when allowed to function as it should.How does it do this regulating? By very closely monitoring the concentration of the blood and secreting hormones to induce the necessary adjustments. The concentration of the blood is the balance between the amount water and the amount of solutes (things dissolved in the water). Most important is the amount of water, because it gives the blood its volume and thus pressure within the closed circulatory system of somewhat malleable veins and arteries. Of the solutes, the most important is sodium, because it holds and must be held in the highest concentration of all solutes, accounting for about half of the overall solute concentration (140/300 mOsmol/L). But the kidney works to keep the entire spectrum of natural solutes, especially the minerals, each in its optimal physiological range.Two nutrients that the kidney works to keep in circulation are proteins and glucose for the obvious reason that they are essential to proper physiological function, and, evolutionarily speaking, rather rare to come by and thus precious. As they are also solutes circulating in the blood plasma, each contributes to the total concentration. And this is where we get to the point:As glucose concentration rises, the total concentration of the blood rises accordingly. For insulin-resistant diabetics whose cells have lost their sensitivity to insulin, and with that their ability to take up glucose from the blood, there is no outlet for this excess glucose that just keeps on rising in concentration. But unlike what the kidney does in regulating the concentration of sodium and other minerals by excreting any excesses through the urine, glucose is kept in circulation, as much as possible.After some time, whether because the concentration is through the roof, because the kidney cannot anymore function as it should to keep the glucose in the blood, or both, glucose spills into the urine. This is how, in fact, it was discovered that all of the symptoms that we described as the condition of diabetes are due to a dysfunctional metabolism of glucose: because the urine of diabetics was sweet smelling and sweet tasting. (What dedicated MDs we had 100 years ago! Do you think your MD would taste your piss today to make sure you're not sick?).In response to this, to maintain the concentration as close to 300 mOsmol/L as possible, the kidney retains water to dilute the blood from the excessive glucose. This makes the blood volume increase and therefore also the blood pressure. This is why diabetics have high blood pressure. This is also why diabetics have very high incidence of kidney disease. This is also why diabetics have water retention and circulatory problems.But this is also why they suffer from a lot more strokes, heart attacks, Alzheimer's, dementia, arthritis, why they have elevated cholesterol, why they age so much faster, and why they go blind.Chronically elevated glucose leads to chronically elevated levels of glycation. Glycation damages cells and tissues everywhere in the body, but firstly in the veins and arteries, which are already significantly more susceptible to damage because of the chronically elevated blood pressure. This leads to more and faster plaque formation, as well as cholesterol production for damage control and repair. Elevated glucose levels and heightened glycation lead to a flood of free radicals and vastly increased systemic inflammation, which makes everything worse, much worse.And all of these conditions, all stemming from insulin resistance and chronically elevated blood sugar, give rise to the multiplicity of the health problems just enumerated that are the main causes of death in the general population, but which are seen with an approximate three to four fold increase (that's 300-400% more!) in incidence for a given age in the diabetic population.What about non-diabetics? Do they need to be concerned about this? Does it mean that there is a direct relationship between blood sugar and blood pressure in all of us? Does it mean that all of us suffer from the whole lot of direct and indirect consequences of having high blood glucose concentrations in the same way as diabetics do, but in proportion to the concentration and the time it takes for it to drop depending on insulin sensitivity? What do you think?Is any of this surprising? Not in the least: it makes perfect sense. Is it difficult to understand why it happens? Not really: when we understand some basic physiology and biochemistry, everything becomes relatively easy to grasp and explain. At least that's what I hope I was able to show here, and at the very least, in regards to the question posed in the title that we set out to answer in the first place. You got it, right? And you'll remember? And next time you see your MD, (if you have one, that is), ask them why diabetics have high blood pressure, and see what they say...If you enjoyed reading this article, please click "Like" and share it on your social networks. This is the only way I can know you appreciated it.

Read More

Such a simple and yet powerful natural anti-inflammatory

He knocks at the door, walks in to my office, and, barely capable of holding back his excitement and enthusiasm, says: "It's amazing! The pain is completely gone! It's just been six days since I started, and the pain is gone! I can't believe it! It's like a miracle!" I was very happy for him. "I'm glad to hear that", I said, "and although it may seem like a miracle to you, it makes perfect sense to me. In fact, I would have been surprised if it hadn't worked."About a month before that, we crossed paths in the bathroom. He was wearing a plastic and neoprene brace on one of his wrists. I had never seen him wearing it, and so I asked what had happened. He told me that about three years ago, he had injured his wrist and that it had never healed properly. Sometimes it hurt more, sometime less, but that it had been particularly uncomfortable for about a week, especially typing at the computer most of the day. He said physicians had prescribed anti-inflammatories of various kinds, and at different times, but none had helped in allowing the wrist to heal or making the uncomfortable pain and stiffness go away.We hadn't really talked much before that, him and I, and he said, rather jokingly: "Do you know what to do to help it heal?" To his surprise, I think, I said: "Of course I do!", and then laughed, partly because it was a little funny to say that, but also to break the ice between us. This is what I then went on to say:"Chronic pain like that, especially in or near a joint, is usually caused by the an excess of uric acid stored in the tissues. Uric acid is the primary metabolic waste excreted in the urine by the kidneys. Since most of us are deeply and chronically dehydrated, the blood becomes saturated with acid that cannot be eliminated in the urine because of the lack of water (and/or salt). But since blood pH cannot be allowed to drop, the acid is pulled out of the blood and stored in the tissues. Over time, all the tissues of the body become acidic. This makes us more susceptible to ailments and injuries of all kinds, and when something happens to cause damage to a soft tissue, like a sprain, for example, the injury does not heal, or takes an excessively long time to do so.""What do I need to do?", he asked. "Do you drink water?", "Very little: I have a small glass once in a while, with lunch, for example, but I hardly ever drink water, really." "Well, you have a big part of your answer right here. You absolutely need to drink water. Otherwise, the kidneys cannot eliminate metabolic acids.", I said."From now on, this is what you will do, every day: When you get up in the morning, drink half a litre of plain water. Thirty minutes before lunch, drink half a litre; and thirty minutes before supper, drink half a litre. That makes a total of one and a half litres of water, always on an empty stomach to ensure maximum hydration, and always about thirty minutes before meals to ensure good digestion.""Now, in addition to that, which is really the strict minimum amount of water anyone should drink, you will have to, and this is very important, drink one liter of water with the juice of two lemons, a teaspoon of unrefined sea salt, and a little bit of stevia to sweeten. You will do this either late morning, at least an hour before lunch, or late afternoon, at least one hour before supper. It is very important that you drink this lemon water on a completely empty stomach and wait about an hour before eating anything.""Doing this will hydrate the digestive system, the blood and the tissues; the lemon water with salt on an empty stomach will, in addition, alkalise the blood, and thus allow the tissues to release the stored acid back into the bloodstream; and these together will allow the kidneys to eliminate this accumulation of metabolic acid each time you pee. In a relatively short amount of time, your wrist will feel better, but everything else in the body will function a lot better as well. Inflammation is not localised; it is systemic. And to get rid of it, we need to get rid of it everywhere.""OK. I'll do it.", he said, "This is more water than I have ever drank in my life, and I don't know if I'll be able to actually drink that much, but I'll try, and I'll let you know." One month later, exactly one week after he did start to drink more water and the lemon water with salt, the chronic pain he had in the wrist, the chronic pain he had had for about three years after the initial injury, the chronic pain for which he had been prescribed and taken a variety of different anti-inflammatory medications, and none of which had worked to help heal the injury, the chronic and long-standing pain was gone. It was completely gone, and it felt like a miracle to him; we can understand why.I start every day with half a litre of plain water, at least. I usually drink a total of about one litre over the course of about 2 hours. About 1.5 hours later, around 10:00, I make myself a lemonade with one lemon, half a teaspoon of salt and a little stevia in a little more than half a litre (about 650 ml) of water. I drink it relatively quickly and then always rinse the mouth well with plain water in order to avoid any issue relating to the mild citric acid damaging the enamel of the teeth.Then, I slowly drink my daily green juice over the course of about one hour. Around 12:00 I have another half litre of water, plain or with chlorella or evaporated green juice powder, salt and stevia. I eat around 14:00. For lunch I usually have my coconut milk pudding, but sometimes have a big green salad with some grilled fish at the canteen (once or twice a week).After lunch, I wait at least two and usually three hours before drinking again, depending on what I ate, (high protein or not). I will usually have a good three quarters of a litre of plain water around 17:00. Then, around 18:00-18:30, I will prepare myself another lemonade with the juice of one lemon, half a teaspoon of unrefined salt and some stevia in a little over half a litre of water. I rinse the mouth with plain water, and usually leave work to ride back home on the bike. When I get there, I drink half a litre of plain water. We have supper about 30-45 minutes later. I usually don't drink anything more after supper, except for a small glass before bed sometimes.That's it: lots of water, lots of salt, lots of lemon water, lots of green juices. A wonderfully simple, effective and powerful natural anti-inflammatory combination for you, your parents, your children, and everyone everywhere. I'll be happy to hear from you if you want to share a personal story or experience that relates to this.If you enjoyed reading this article, please click "Like" and share it on your social networks. This is the only way I can know you appreciated it.

Read More

On the origin of cancer cells - part 1

On February 24 1956 was published in the journal Science a remarkable and exceptional paper by an equally remarkable and exceptional scientist. The paper was entitled On the Origin of Cancer Cells, and the author was the winner of the 1931 Nobel prize for Physiology or Medicine, Professor Otto Warburg.[caption id="attachment_8858" align="alignnone" width="1024"]

otto-warburg-old-highresfaceshot

Professor Otto Heinrich Warburg (1883-1970)[/caption]After more than 50 years of research on cellular respiration, metabolism and physiology, Warburg had identified, understood, demonstrated and now explained the mechanisms by which cancer cells develop, survive, spread and proliferate, and what, at the most fundamental level, distinguishes them from normal cells.It is my intention to relate the essence of these results, together with the necessary background, as clearly as it is possible for me to do with the hope that you will remember it well. This is without any doubt one of the most important and far-reaching results of medical science in its entirety. Such is the importance of this work, that it may well be the most important bit of medical science I will ever write about and that you will ever read about. But although this is so, it can be stated in a single sentence.The truth about the origin of cancer is that despite the numerous carcinogenic agents, those identified as such and those still unknown, and despite the numberless forms and tissues in which cancer can manifest itself, there is only one fundamental cause of cancer at the cellular level: injury to respiration by damage to mitochondria.Biological energyThe mitochondria, independent micro-organisms with their own metabolic and reproductive systems living symbiotically with the other organelles inside the cell, could be considered as the most important of the organelles because it is the mitochondria that normally produce the energy (in the form of adenosine triphosphate or ATP) on which each cell, and therefore also the entire organism, rely for function and survival.Each cell must produce the energy it needs to sustain its activity and maintain its structure, and each cell cares only about itself: it knows only what it must do and what it needs in order to keep itself alive in the best possible condition and health that it can manage through continual adaptation. The way it knows anything else outside of itself is by sensing its environment, its immediate surroundings, through the various sensors (biochemical receptors) and doorways (ionic channels) in its walls (the cell's outer double-layered membrane).Cells can produce energy using glucose (from carbohydrates), amino acids (from protein) or fatty acids (from fat). By far the most effective way to do it is through burning fatty acids. This produces the most energy and no acidic byproducts. This is therefore a normal cell's preferred fuel.There are two intervening factors, however, that make it rather rare for humans to function primarily on energy derived from fat. And although this is true today, it wasn't for the bulk of our evolutionary history during which all species of homo must have derived most, and probably often even all, of their energy from fat. The first and most important of these factors is that today, we tend to get most of our calories from carbohydrates.Because it is easier for cells to breakdown and use the much smaller and simpler glucose molecules than it is to use the longer and more complex fatty acids, while there is enough glucose in the bloodstream, it will always be used preferentially, and eventually almost exclusively, as the cells grow insulin-resistant and become unable to use fatty acids almost completely. In such a metabolic state, because protein can relatively easily be converted into glucose, this is what the body does when it runs out of glucose, because, from the lack of practice, it cannot access the fat stores. Therefore, due to insulin resistance, fat just keeps accumulating, stock piled in ever larger and distended fat cells throughout the body, and never used to make energy for the now struggling, energy-starved cells.The second factor is strictly physiological, and relates to the fact that it takes longer to oxidise fat than to oxidise glucose, and even for glucose, it takes about 100 times longer to oxidise inside the mitochondria than it does to process it anaerobically (without oxygen) in the protoplasm, the general space within the cell, outside the mitochondria. For this reason, in circumstances where the cell needs ATP quickly (in lifting weights or sprinting, for example), it will need to use this super fast energy production mechanism in addition to the slower oxidation in the mitochondria, with proportions that depends on the energy demand.All ATP production using glucose begins with its breakdown into something called pyruvate. This is called glycolysis (or substrate level phosphorylation). It takes place whether there is oxygen available or not, and does not involve the mitochondria because it takes place in the protoplasm. Glycolysis involves 10 steps each of which requires the action of specialised worker proteins (respiratory enzymes). From this process the cell derives two molecules of ATP. Pyruvate is the main product, but the process also leads to the production of lactic acid and hydrogen ions.At this point, the pyruvate can be carried to the mitochondria where through a much lengthier and vastly different process (oxidative phosphorylation), which in this case relies on an ample supply of oxygen, the mitochondria can produce up to an additional 34 ATP molecules (this is the case in aerobic yeasts), for a total of 36 counting the first two from glycolysis.In practice, factoring in some metabolic inefficiencies in the process, the result is probably somewhere around 28-30 molecules of ATP for our cells. This is nonetheless a lot of energy---15 times more than from glycolysis alone---that can be derived from a single molecule of glucose. Bear in mind, however, that gram for gram, fat can produce six times more energy than glucose, raising the total to around 200 molecules of ATP, and this without producing acidic byproducts.Aside on the use of words and names as symbolsBefore going any further, I want to bring your attention to something important, generally unrecognised, but essential to our understanding and perception of the world and everything we come into contact with. It is language, complex language, symbolic language, that allowed a small subgroup of Homo Sapiens to first distinguish themselves from all other animals and also from all other species of Homo, and then spread across the continents and come to dominate almost every ecosystem on the planet.The more language is refined and the more thorough is its mastery, the more complex cognitive processes become and the more subtleties of understanding can be both expressed and discerned. There is a major problem, however, that comes about in every language-using person, and this is that the symbol used to refer to something, the word, is unconsciously taken to be the same as the object to which it refers. Furthermore, not only is the object treated as an entity on its own, a thing that does not depend on anything else to be what it is (which, of course, it does), but the word also becomes a thing unrelated to other words that are different in appearance and sound.This is a serious problem for understanding complex processes. And it is particularly relevant in this discussion here. We must remember that even if we are talking about all sorts of different things like glucose, amino acids, fats, pyruvate, enzymes, mitochondria, organelles, and on and on, that these are all words, symbols that we use to identify molecules and little beings like mitochondria that do not possess language, and further, that do not care at all what we call them.It is best to view this whole business of processes at the cellular level as a ceaseless dance where atoms mostly of carbon, hydrogen, oxygen and nitrogen with a few others here and there, combine into molecules that are manipulated by proteins into other molecules, sometimes simpler and sometimes more complex, the change sometimes being unidirectional and sometimes a reversible state change going back and forth, everything depending everywhere on the characteristics of the environment, the stage, in which this dance is taking place. And that all of this takes place totally unaffected and independently from any of the names we have for any of its characters and dancers.So don't be fooled by the words and names in thinking that because the names are so different they are referring to inherently different things. This is not so. Words and names are just words and names. We use them to express ourselves, but must not be moved to believe that they are referring to entities having a life of their own, interacting in a world of things where every thing bounces against every other thing. This is just wrong, and it is highly misleading: clearly misleading in the realm of cellular biology, which is our immediate concern in this article, but also misleading in our everyday, which should definitely be of concern.Back to cellular respirationCellular respiration (oxidation in the mitochondria) requires oxygen. If for any reason there is not enough, the cell uses a backup method to sustain its energy needs. This happens when the energy demand is so great that the cell cannot wait for the mitochondria to produce the additional ATP (as mentioned above under extreme exertion), but also if there is simply a lack of oxygen for any other reason, whether it is acute, like from exposure to a large enough amount of a respiratory (mitochondrial) poison or during an asthma attack, or chronic, like when we spend our days in an office building with recycled air where levels of oxygen are lower and carbon dioxide higher than they should ideally be, but not quite enough to become a problem noticeable by a critical number of people. In such cases, instead of being brought to the mitochondria, the pyruvate can be used as the oxidative agent by the respiratory enzymes to ferment the lactic acid, and recondition the NAD so that it can engage again in the breakdown of another molecule of glucose into pyruvate. (We'll come back to the details of this another time.)Essential to remember is that for a normal cell this is the solution of last resort when there is not enough oxygen, and that animal tissues suffer serious damage when deprived of oxygen for an extended time, where 'extended' here is on the timescale of cellular processes, which for us is very short---on the order of minutes.Anyone who has done all out sprints with high resistance on a bike, or bench pressed a heavy weight to muscular failure, knows the feeling associated with the muscles being unable to respond to the load. This is because the cells are starved of oxygen and overloaded with acid. Under extreme exertion, lactic acid fermentation for ATP production dominates from about 10 to 30 seconds, and muscular failure follows within 30 to 60 seconds.Struggling to surviveAs we've seen, there are two major differences between these processes of using glucose for energy production. The first is that for one molecule of glucose, complete oxidation produces around thirty molecules of ATP, whereas glycolysis or fermentation produces only two. The second is that oxidation occurs inside the mitochondria, whereas fermentation, sustained by respiration enzymes, takes place outside the mitochondria. Therefore, it is both the quantity andquality of the energy that is degraded.Also as we've seen, a normal cell under normal circumstances sustains itself---both in function and structure---by relying on the energy produced by the mitochondria, whether by oxidation of glucose (pyruvate) or fatty acids, and only ever use fermentation for energy balance adjustments in exceptional circumstances. If, however, for any reason at all, even a small number of the mitochondria in the cell get damaged, a serious problem arises because the injury makes the cell incapable of producing the energy it needs for proper function, maintenance and repair.If the damage is severe, the cell will die, and will, if things are running relatively smoothly, be broken down, cleaned up, excreted and replaced by a new one that will take its place. If the damage to the mitochondria is not so severe, the cell will not die, but will be crippled in its energy-producing capacity, the mitochondria will not be able to produce all of the ATP the cell needs, and this will force it to use fermentation to top up its energy requirements.Unfortunately, the injury to the mitochondria's genetic code will not only be passed down from the damaged parent to the next generation, but will lead to an irreversible degradation of mitochondrial function with each transcription and reproduction into each successive generation of these vital organelles. With each generation, the mitochondrial function is degraded further and the energy deficit grows.As a consequence, the growing energy deficit is compensated by increasing ATP production from fermentation. But the energy from fermentation is not just less plentiful, it is also of a much lesser quality compared to that resulting from proper aerobic respiration involving the mitochondria, and it simply cannot maintain the structure and function of the cell. Thus, the cell degrades. Everything about the cell degrades as it struggles for survival.The evolution in the ratio of energy produced by respiration to that produced by fermentation, initiated by the damage to the mitochondria and driven by the cell's striving to maintain energy balance, is in fact a devolution from a finely tuned energy production system of a highly refined and specialised cellular structure and function, to a primitive energy producing mechanism and a coarse and severely degraded cellular structure and function akin to what we see in yeasts and fungi.The birth of a cancer cellDegradation and devolution continue until fermentation energy is enough to fully compensate the loss of respiration. It is at this point that we witness the emergence of a cancer cell. And it is now a perfectly functional and healthy cancer cell that has lost enough of its original characteristics, both structural and functional, to begin a programme of its own, intended to increase as much as possible survival probability in its new and partially self-generated environment that should ideally be high in glucose---as high as possible, low in oxygen---this is preferred but not critical, and highly acidic---cellular pH as low as 6 or even less and extracellular pH potentially significantly lower.Although these terms, birth and emergence, are powerful and very useful in conveying a vivid imagery of a developing process that eventually reaches and overcomes a critical threshold as it is the case here, it is not really a birth or an emergence as much as it is a metamorphosis, gradual and typically very slow, taking place over decades if not over most of a person's lifetime, with a continual and intimate dependence on the biochemical makeup of the environment surrounding the cell, and surrounding each and every cell throughout the body, from hair, scalp and skin, to fingers, fingernails, toes and toenails, from mouth to colon, from brain to liver, from breast to uterus, from throat to prostate, and from and to everything else that constitutes the entire human organism inside and out.Over this long struggle for survival, because this is truly what it is, the cell is at first forced to generate supplemental energy from fermentation to make up the small difference that the slightly damaged mitochondria cannot. This increases the level of acid inside the cell. Because every enzyme-mediated biochemical process that takes place---and that indeed has to take place---is sensitively pH-dependent, all are instantaneously affected negatively by this acidification and drop in pH.Moreover, increased acid translates directly into lack of oxygen, which further stresses the mitochondria, making their oxidation of glucose and fatty acids more difficult and less efficient. This in turn leads to a further degradation of the mitochondria, cell structure and function, an increased reliance on fermentation energy, a rise in acid levels, and a drop in oxygen availability: clearly a vicious cycle---a very vicious cycle.Because ATP production is so much less efficient through fermentation than through respiration, the cell needs much greater amounts of glucose. This forces it to develop a greater sensitivity to it, which forces the formation of more insulin receptors because it is insulin that carries the glucose through the cell wall. And it is, in fact, the case that cancer cells typically have about ten time more insulin receptors than normal cells, and that this makes them ten times more capable of grabbing hold of circulating glucose to sustain themselves. But again, remember that this is yet another adaptation in a struggle for survival without which the cell would die.Questions, questions and more questionsThere is quite a lot more that needs to be addressed and explained. General questions like: How did Warburg figure all this stuff out? And what else did he discover? Specific questions like: Are cancer cells weaker or stronger, more fragile or more resilient? What is it that fundamentally distinguishes them from normal cells? And why does it sometimes take an entire lifetime but at other times just a few years to grow a cancerous tumour? Epidemiological questions like: Why is cancer spreading? Why does it appear more and more in young people? And why does it tend to not only develop but intensify with each generation along family lines? Finally, from all of this detailed information and knowledge, wouldn't we like to know if there is something to do to prevent or cure cancer? Wouldn't we like to know what that is: what we can do to prevent and cure it? Of course! That's our main goal, isn't it?We will look at all of these issues and more together, but now I can't help wonder if the following question, this multi-billion dollar question, might have popped up in your mind while you were reading, as it did for me when I read Warburg's paper: If he, and by extension, we, as the community of thinking human beings, had understood, explained and demonstrated how cancer arises and then develops in 1956 already, why is it that today, almost 60 years later, cancer rates continue to rise every year, cancer cases appear in people at an increasingly younger age every year, and cancer claims the lives of more people every year than it has ever done? How can this be, and why is it so? Hasn't anybody else looked at his research and reproduced the results? Haven't we got today much better instruments and technical means of verifying everything he presented throughout his long career? Don't worry. We'll definitely look at that too.If you think this article could be useful to others, please 'Like' and 'Share' it.

Read More

The crux of intermittent fasting

It is less than futile, in fact, it is outright nonsensical, to argue in favour of or promote an explanation that is in contradiction with observational evidence. What is required is to find, or at least try to find, a sound and well-founded explanation. And not just for some of the observations, but for each individual observation, as well as for the entire ensemble of observations. This is what we should do.Fasting means not eating; everyone knows that. The meaning of the word has been loosened to include not consuming appreciable amounts of calories, as in doing a green juice fast, for example, but which should instead rightly be called a cleanse. The expression intermittent fasting implies a cycle of some kind, and is used to mean not eating for periods of 16, 18, 24 or 48 hours, but on a regular basis, like every week or even every day.Fasting has been known and recognised for its often quasi-miraculous curative effects for thousands of years. Indeed, it is possible to find accounts of individuals recovering from just about any ailment and disease imaginable simply from fasting long enough. It seems, however, that fasting as a healing modality, has, over the past couple of centuries, steadily grown less popular in the medical profession and, as a consequence, also in the general population.A resurgence of scientific interest over the last decades in the benefits of fasting for treating various degenerative conditions like arthritis and cancer, but also for extending healthy lifespan about which I will write at one point in the future, has brought it back into the spotlight, especially in circles of optimal health enthusiasts, which includes some gym go-ers and body builders interested not so much in optimal health, but mostly in losing fat and gaining muscle.Therefore, there has been quite a few people trying out or adopting intermittent fasting for periods of a few weeks to a few months, or even longer, but reading things here and there shows that they have had varying success given their initial motivations, whatever those might have been.Ori Hofmekler was one of the first to popularise the idea of intermittent fasting with his book The Warrior Diet. He has continued to write and to encourage intermittent fasting for a wide range of benefits, especially in regards to the goal of improving body composition, as one of his last titles expresses perfectly: Maximum Muscle, Minimum Fat.Dr Hertoghe, the world famous endocrinologist and anti-ageing specialist, as well as Mark Sisson (Primal Blueprint) have also been vocal and influential proponents of intermittent fasting for a while. More recently, Dr Mercola did several interviews with Hofmekler, and wrote a few articles on the topic, sharing his experience and enthusiasm for the health and fitness benefits intermittent fasting can bring. These are just some of the well known players that I know of and respect in the natural health community, that have endorsed and promoted this kind of cyclical fasting.Naturally, as is the case for almost any topic we can think of, there are opposing opinions and, in fact, bashing of intermittent fasting as a means to improve health and body composition, especially in the popular fitness and gym culture. And, as is also the case for almost any topic we can think of, contradictory views and opinions are usually caused by misunderstanding, or at least, incomplete understanding of the elements involved, and in particular the more subtle ones.On the one hand, we have the proponents claiming that we can very effectively get much healthier, with much improved energy levels, mood, digestion, and natural detoxification and excretion of metabolic acids; normalise and recover the optimal balance of specific hormones, and eventually, of the entire hormonal system; over time lose all excess body fat reserve, increase flexibility and hasten recovery, better preserve our precious muscle tissue and build more very efficiently. And these are just some of the claimed (but also documented) benefits of intermittent fasting.On the other hand, the nay-sayers and bashers report that these claims are more than just false, they are, in fact, often the exact opposite of what they have found or seen for themselves or in others coming to them for help and expert advice. Reports of feeling really terrible, with massive headaches, bad digestion, awfully low energy levels, and thus, obviously, very bad and destructive moods; loss of some fat but also, over time, of lots or maybe even most of their muscle tissue; extreme hunger, with frightening ravenousness when evening mealtime comes around, leading to monstrous, uncontrolled and uncontrollable overeating without discrimination of food kinds or quality, and over time, showing obvious signs that can be identified as those associated with eating disorders.How is it possible to have research, studies and documented cases---plenty of documented cases---that provide observational evidence---proof, if you prefer---that support the claims of both of these camps? How can we observe and actually measure such profoundly different consequences in different people that are supposed to follow comparable diets, consequences that are diametrically opposed to one another. In other words, observational evidence that appears to be completely and totally contradictory?A simple approach, the one espoused by many, maybe most, of the intermittent fasting bashers, is to just say that proponents are wrong and imagining things, letting themselves be fooled by the hype, but actually blind to the reality of the detrimental consequences of practicing cyclical fasting.For me, the only satisfactory approach is the one that seeks to explain all the observations, to reconcile all the observational evidence, and make sense of the entire ensemble of information available through a physiology and biochemistry based explanation that is complete. I also think it is fair to say that there are more better informed proponents than there are opponents, but this is not obviously the case, and I would thus not bet much on this claim.Here it is, the crux of the matter, the one single crucial element needed to understand and explain the wide spectrum of apparently contradictory observations that is overlooked because it is misunderstood:

The body's response to intermittent fasting is entirely dependent upon the state of one's metabolism, and everything about it hinges on the physiology of nutritional ketosis.

In fact, the vast majority of the benefits of intermittent fasting are those derived from nutritional ketosis but heightened by the fasted state, and therefore, can only become manifest if the fasting individual is keto-adapted and remains in nutritional ketosis most of the time.You might be thinking: what in the world is nutritional ketosis, and where's the explanation for the contradictory observations? Nutritional ketosis is the metabolic state in which the liver manufactures ketone bodies from fat to provide fuel for the brain cells that can only use glucose or ketones for their energy needs. This only happens if and when circulating insulin levels are low, and when blood glucose stays below 80-90 mg/dL for a period of 24-48 hours (generally speaking, on average, and in normal circumstance). The reason is fat will not be burned for fuel is there is plenty of glucose in the blood, and in order to burn fat, insulin must be low.This metabolic state is induced either by fasting---this is the quickest but also most extreme way to do it, or by eliminating insulin-stimulating carbohydrates (sugars and starches) from the diet---this is by far the easier and obviously much more sustainable way to do it. The longer it is maintained, the better adapted the metabolism becomes. But before ketones are produced to fuel the brain, the body goes through metabolic changes to which it tries to adapt as best it can. The most important but also most severe of them all, is the fundamental shift from using glucose as the primary fuel, not just for the brain, but for all cellular energy needs in the body, to using fats, both from body fat reserves and from food.The bane of our time is global, chronically elevated insulin levels. Hyper-insulinemia, as it is technically called, sits squarely as one of the root cause of all the diseases of civilisation that kill most (90%) of us today, more or less uniformly across the planet. What does this have to do with our considerations of intermittent fasting? It has everything to do with it:

Insulin is the master hormone that orchestrates the metabolism in what relates to storage and usage of macronutrient (carbs, fats, and proteins) at the cellular level.

Chronically elevated insulin always and inevitably leads to insulin resistance. Insulin resistance means that cells do not respond to insulin as they should, and require ever increasing concentrations of insulin in order to move glucose into the cell. And ever increasing concentrations of insulin means ever increasing inability to use fat cellular fuel, with particular difficulty in unlocking and tapping into the usually greatly overabundant reserves of body fat.What is truly remarkable is that insulin resistance, even if it has been developing and growing steadily with each passing day and with each high carb meal or snack over our entire lifetime, it can be reversed in weeks when insulin-stimulating carbs are eliminated from the diet: 48 hours to enter nutritional ketosis; one week for water retention release, initial intestinal detox and basic adaptation to fat-burning; four weeks for functional keto-adaptation; and 8 weeks for complete keto-adaptation.Eliminating insulin-stimulating carbs eliminated the need for large insulin secretions by the pancreas. Therefore, both glucose and insulin concentrations steadily decrease with time, and eventually fat-burning and ketone production kicks in, marking the first step in the transition of the metabolism from sugar-burning to fat-burning, which is what we referred to as fat- or keto-adaptation.There is a catch though: before fat-burning and ketone production begins, the metabolism of the insulin resistant individual will go through withdrawal from its sugar addiction. First, sugar levels start to drop. After a number of hours, 3 to 4 hours say, blood sugar is too low to supply enough fast-burning glucose to cells for their metabolic activities. Because insulin remains high, and because the body is highly insulin resistant, as we said, it is not possible to use fat from the body's fat stores. Therefore, it is the liver that comes to the rescue and begins to convert its stores of glycogen into glucose and pumping that into the bloodstream to provide cellular fuel.Within a few hours, however, the glycogen in the liver is depleted, and blood sugar drops once again, and lower still. Because the body remains unable to tap into its fat reserves due to the state of insulin resistance, it has, at this point, no choice but to turn to muscle tissue, from which it is far easier to breakdown protein and manufacture glucose than it is to start burning fat. And thus, the muscles are eaten away in order to provide the glucose to all of the multitude of insulin resistant (sugar-addicted) cells throughout the organism.We now come to the final analysis of our observational evidence in regards to intermittent fasting, and consider two scenarios that can explain, as it rightly should, the ensemble of observations in its entirety, and thus clarify and reconcile the apparent contradictions that are seen, and which lead to serious confusion about the issue, even, and maybe especially, among our health, fitness and bodybuilding experts.Scenario 1: We take a perfectly keto-adapted person who has been eating a diet devoid of insulin-stimulating carbs for a long time, and who therefore always has very low glucose and insulin levels, and as a consequence, exquisite insulin-sensitivity. What happens if they stop eating? Nothing special, really. Their body is always using fat and ketones to supply all healthy body and brain cells with their metabolic energy needs. So, if there is no fat that is provided through the digestive system, then it is taken, without any trouble or noticeable changes in energy levels or concentration, from the body's fat reserves that are always plentiful, even in the leanest among us with single digit body fat, because 1 gram provides 9 calories, which means that we need only about 200 g for a whole day of normal activities, and have at least 5 kg at any given time (8.5% fat on 60 kg body weight).Moreover, if we exercise during the fast, there is no noticeable difference because at low intensity, cellular energy needs are taken care of by fat which is continuously released from the fat stores into the bloodstream, while at higher intensity the glycogen stored in the muscle cells themselves, can be used in the form of quick burning glucose together with additional supply from the liver than converts its stores of glycogen if need be (if stress hormones are secreted).So, biking and working out with weights, for example, is perfectly fine and actually feels great. Even more interesting is the fact that stimulating the muscular system by exercising while fasting triggers the release of various hormones in addition to growth hormone for which there is nothing more effective than fasting, whose purpose is primarily to preserve those physiologically important muscle tissues as essential for functional survival, while breaking down to recycle the proteins of other tissues which are not required like lumps, tumours, and scar tissue. And this means that the hormonal environment created by exercise under fasting conditions is conducive to both preserving and building more muscle, all the while also expediting and maximising fat-burning. And this is what is observed.Hunger is present at times, but is certainly far from being problematic. There are no headaches, no stomach pains, no sleepiness, no scattered mental discursiveness, no problems concentrating or working. Sitting down to eat the evening's nutrient-dense, enzyme-rich and high fat meal with adequate amounts of protein for tissue repair and muscle building, is nourishing, perfectly satisfying, and well digested throughout the evening and night, as long as we eat several hours before going to bed. No over-eating, no cravings, no psychological disturbances, no problems at all. A picture of perfect metabolic efficiency.Scenario 2: We take an average but pretty active person from the general population who eats a standard diet with plenty of insulin-stimulating carbs, both simple sugars, and complex carbs in the form of pasta, rice, whole grain bread, etc (70% of calories), and who therefore always has high blood glucose and insulin levels, and as a consequence, pretty strong insulin resistance. What happens if they stop eating? We saw this earlier: blood glucose drops, but not insulin; the liver starts to pump out glucose to pick up the slack, and runs out after about 3-5 hours; sugar drops once more, but not really the insulin; since fat stores cannot be tapped into, muscle tissue is broken down to manufacture glucose; longer period of fasting means more muscle breakdown.If we exercise gently, things are fine at first because we can tap into the glycogen stored in the muscles, but will soon get much worse because we increase the energy demands, but continue to be unable to use body fat stores, and therefore increase the rate at which muscle tissue is broken down, especially if we do weights and high intensity training.Low intensity aerobic exercise depletes glycogen from the muscles and when it runs out, we feel exhausted, completely flat out. (This is the same as hitting "the wall" in long distance events, and only occurs because the body cannot readily tap into its fat reserves: a well keto-adapted athlete never really hits any such walls!) Far worse is high intensity exercise, which causes more intense and faster muscle breakdown, the higher the intensity, the more muscle breakdown.Waking up in the morning after a night's sleep (and unconscious fast), we are starving, dearly longing for the bread, the jams, the cereals, the orange juice, the waffles, the maple syrup, and everything else we can imagine, but we hold out and go to work. Every hour is excruciating, terrible headache, hunger pains throughout the abdominal cavity, but when these subside, we are falling asleep, with a complete inability to concentrate on anything at all. We feel like shit.By the time evening rolls around, we are so ravenous we would eat a horse. So we sit down and eat, and eat, and eat everything we can get our hands on: pizza, pasta with sauce and cheese, garlic bread with butter, steak and potatoes or french fries, and then desert, sweets, oh man, we waited all day to eat, and now we can eat anything and everything we want, because tomorrow we'll be starving again for the whole day. We get up in the morning, and the whole cycle starts over again.Over time we kind of get used to it, but because we don't understand the most essential element of the whole thing---nurturing nutritional ketosis---we remain just as insulin-resistant, every day we feel shitty, every night we eat like a pig, and throughout the whole time, more or less, we break down muscle, and our insulin resistance prevents appreciable fat loss. After doing this for a while and seeing the detrimental effects of this regime, we go seek help from a fitness expert. They tell us that this intermittent fasting thing is a load of shit, and as them, grow instantly convinced that all the stuff people say about the benefits it can bring for optimal health and improved body composition is also a load of shit: if it didn't work for me, then it simply cannot work for anyone.Unfortunately, neither we nor the fitness expert understands enough physiology, biochemistry, and endocrinology to be able to make sense of these conflicting and contradicting accounts, personal experiences, and observations reported in the scientific literature, and just settle into this view that it really is a load of BS, and that it might work a little, sometimes, on some people, but not on others, and no matter what, it always leads to pathological states of mind, if not full fledged eating disorders.It is my hope, however, that you are now able to see how these very observations, as conflicting, contradictory, and certainly quite puzzling as they may seem at first, can be explained and reconciled marvellously well in light of a better understanding of the basic principles of energy metabolism, and of the remarkable but unfortunately almost universally misunderstood state of nutritional ketosis, that most medical professionals usually mistake for the pathological condition of diabetic ketoacidosis.Finally, in closing, I have a confession to make: I have been experimenting with intermittent fasting in one form or another for many years now. I never eat anything before midday, and on most days until about 14:00, which makes it an approximately 18-hour fast from 20:00 the night before. On weekends, I fast until noon, and then go do weight training. On those days, I usually eat for the first time around 17:30, and make that my single meal of the day. On some days I eat a large lunch and dinner to increase my overall calorie and protein intake. I usually workout 3-4 times a week, and usually in the late afternoon-early evening.I have not experienced loss of muscle since I dropped the insulin-stimulating carbs from my diet in 2007. Both muscle tone and strength is maintained very well even after long periods without resistance training. I have, however, never made a particular effort to gain muscle mass. This year, I would like to see how much muscle I can put on, and will thus put the science to the test for myself. If you are interested, don't worry, I'll keep you posted. If you're not, then that's fine too.But if there is a single thing you must remember from what I wrote, it is this: you can only really benefit from intermittent fasting when you are keto-adapted, and remain in a state of nutritional ketosis the majority of the time. Otherwise potential benefits are lost, and the practice can become rather detrimental.[caption id="attachment_8056" align="alignnone" width="800"]

hunterslookingoverplain

How long do you think these hunters hunt each day? Do you think they have a big breakfast before going, or a large lunch while they are out? How long do you think they are out before they settle back around the fire in their village to have their main meal of the day? And what do you think they will eat when they do return with their catch of the day?[/caption](This article was written after reading this article by Dani Shugart on T-Nation sent to me by a friend who knew I would have some remarks to make, and probably some clarifications to bring to it.)

Read More

Assessing B12 status of our workforce

Good morning:Cobalamin, that we call vitamin B12, is without any doubt one of the most important micronutrients. However, very few people, and unfortunately, also very few doctors, know this, and even when they do know, they very rarely truly appreciate the extent to which B12 deficiency can be detrimental.Today, I will tell you why B12 is so important, what happens when there is B12 deficiency and why it is so widespread, and finally, what we can and should do about it, as individuals, but more specifically with what concerns us here, to help maintain a healthy workforce. I will do this in 10 minutes.Before we get into it, I want to highlight that maybe the biggest difficulties we, as a society, have, but have to overcome for the benefit of the population on a large scale, is that even though many doctors have learnt that B12 deficiency can be extremely grave, they believe it is rare and that systematic testing is not necessary. This is very unfortunate, and it is this attitude that causes, on the one hand,Why B12 is so important?B12 is essential at three fundamental levels: cellular energy metabolism, gene transcription, and nervous system function. Cobalamin's vital role at the cellular level is not restricted to only some tissues and organs: it is vital for every cell of every tissue and every organ. In relation to the nervous system, both for the central nervous system—our brain—and the peripheral nervous system—the spine and entire network of nerves connected to the brain and coursing through the whole body—vitamin B12 is essential in building, maintaining and repairing the myelin sheath that covers the nerves to ensure protection and proper signalling. It is, in fact, the consequences of B12 deficiency on the nervous system---an array of neurological issues---that most often betray this very serious problem.What happens when it is deficient?Now just ask yourself what you think would happen if the myelin sheath that covers all the nerves throughout the body were to deteriorate?Neurological symptoms include: numbness, tingling and burning sensations in the hands, feet, extremities, or truncal areas; Parkinson-like tremors and trembling; muscles weakness, paraesthesia and paralysis; pain, fatique and debility labelled as chronic fatique syndrome; shaky legs, unsteadiness; dizziness, loss of balance; weakness of extremities, clumsiness, twitching, muscle cramps, lateral and multiple sclerosis-like symptoms; visual disturbances, partial loss of vision or blindness. But the list goes on.Psychiatric symptoms? Confusion and disorientation, memory loss, depression, suicidal tendencies, dementia, Alzheimer's, delirium, mania, anxiety, paranoia, irritability, restlessness, manic depression, personality changes, emotional instability, apathy, indifference, inappropriate sexual behaviour, delusions, hallucinations, violent or aggressive behaviour, hysteria, schizophrenia-like symptoms, sleep disturbances, insomnia. And here again, the list goes on.At the cellular level, every cell becomes unable to adequately produce energy, be it from glucose or from fat. We can easily extrapolate and imagine what it would mean for the organism as a whole to have a lack of, or severe debility in the energy available to it at the cellular level, and this, for the trillions of cells of which it is made. This would have a most profound effect on everything that we do, and everything that the body does throughout the day and night.Now consider a yet deeper level: in the nucleus of every cell, where genes are protected and cared for, a problem in the very transcription and replication of genes---these delicate operations that are necessary and vital for the continual renewal, repair and reproduction of cells---which must and do take place throughout our life, this long succession of infinitesimal instants, the perception of which is almost universally absent from consciousness, but for which the timescale is, in fact, very long at the cellular level, where movements and interactions take place at phenomenal speeds. Vitamin B12 is absolutely essential for this too. And if it's missing? Unintended, unplanned, and unwanted genetic mutations. This means problems: very serious problems.Why is deficiency so common?There are two reasons for cobalamin deficiency: inadequate intake and inadequate digestion. Although the former is indeed quite important, it is the latter that causes B12 deficiency to be so common, and in fact, quasi-universal.Cobalamin is produced in the gut of animals by specific bacteria that make part of the intestinal flora. Even if this can also be true for humans, we have relied on animals, both by eating them and products derived from them like eggs and dairy, for millions of years of evolution as hominids. In animal foods, cobalamin is always bound to protein from which it needs to be separated in order to be used. This, in turn, can only be done starting in the highly acidic environment of a well functioning stomach that secretes enough hydrochloric acid, but also enough Intrinsic Factor as well as pepsin.Cobalamin is carried into the duodenum---the first part of the small intestine---by salivary B12 receptors that are then broken down by pancreatic protease. This allows the free B12 to attach to Intrinsic Factor, and make its way to the ileum---the very last part of the small intestine---where it penetrates the mucosal wall for absorption. Finally, the free cobalamin latches onto the plasma transporter protein transcobalamin II whose function it is to carry the B12 to the cells throughout the body. Any excess, unneeded at any given time, is carried to the liver where it is stored.The major problem is that almost 100% of the population has dysfunctional digestion: stomachs producing neither enough hydrochloric acid nor Intrinsic Factor and pepsin; pancreases producing neither enough bicarbonate solution needed to neutralise the acidic chyme from the stomach when it goes into the small intestine, nor enough enzymes essential for breaking down nutrients; and chronically acidic intestines coated with partially undigested food, especially putrefying protein, overtaken by pathogenic yeasts like candida, and with highly compromised intestinal walls that not only cannot properly absorb nutrients, but also cannot prevent toxins from leaking back into the bloodstream and body in general. Pretty scary, isn't it?So, what do you think happens to the excessively delicate and precarious chain of metabolic and biochemical steps necessary for the absorption of B12 in a tiny section of the very last part of the small intestine under these pretty dismal conditions? It breaks down. And what is the result? Quasi-universal B12 deficiency in all age groups, from infants to the elderly. Naturally, because the digestive organs tends to degrade with time, the older we get, the more deficient we become. And is it a surprise that all signs and symptoms of ageing that we all deem normal and inevitable are also all symptoms of B12 deficiency? No, not in the least.What can be done about it?Testing B12 status should be included in every blood test for everyone everywhere. We are still very far from this situation, however. Testing B12 status can literally save your life, but at the very least, save you from mostly permanent and possibly extremely debilitating neurological damage. It is most accurately done by measuring concentrations of serum B12, plasma Homocysteine (Hcy) and urinary methyl-malonic acid (MMA), but it is usually more than adequate to measure only B12 and Hcy in order to assess B12 status.(Both Hcy and MMA are toxic byproducts of protein metabolism that must be converted to benign and/or useable forms by the action of B6, folic acid (B9) and especially B12. And by the way, Hcy, because of its highly toxic nature and damaging effect on blood vessels, happens to be the best marker of all for risk of cerebro- and cardio-vascular disease.)Consequently, what we must generally do is to supplement to first raise and subsequently maintain optimal B12 levels. What are optimal B12 levels? Well, it is remarkable that on most blood test result sheets we see the "normal" B12 range starting at 200 or even 180 pg/ml, given that both neurological and psychiatric symptoms appear at levels below 450 pg/ml. The consensus between B12 experts is that levels should be above 600 and optimally between 800 and 2000 pg/ml. There are no reported cases of negative consequences of hyper-cobalaminia, nor of B12 overdose while supplementing with methylcobalamin, the right choice for supplementation. (See 1 and 2---a compilation of B12-related literature.)What should we do about it?Even though there is ample evidence and data of various studies showing how widespread B12 deficiency actually is, it would be good to have our own data, and therefore, our own grounds for further action and recommendations. For this we should just add the B12 and Hcy tests for every staff member (and encourage contractors to do the same), and compile and analyse these data. The data will be collected anonymously by the medical service. It will include---in addition to B12, Hcy, Total Blood Count and iron (which are standard)---age, gender, weight, height and waist circumference (to calculate BMI and ABSI).The analysis, following the prescription of the biostatistician Royall (1997), and inspired by its application in an astrophysical context by Belanger (2013), can be carried out regularly, whenever additional data is available, until it becomes conclusive enough to stop gathering data.At that point we would know beyond any doubt if it is the case that the workforce is generally (> 50%) B12 deficient (< 450 pg/ml), what actual fraction it is, and some other useful information that can be extracted from the data. We would then be able to formulate conclusions and, depending on the results, also recommendations for other establishments, and all of this, with the very simple but noble motivation of promoting health among our colleagues, friends and family members, not just now, but for the rest of their life.(This is the transcript of a short presentation I gave on Friday November 22, 2013. The information is from my article B12: your life depends on it. If you enjoyed reading this article, please click "Like" and share it on your social networks. This is the only way I can know you appreciated it.)

Read More

Cure diabetes in a matter of weeks

Both the incidence and growth rate of insulin-resistant diabetes have reached epidemic proportions in many countries. It is most remarkable in the US with probably close to 30 million by now, and thus about 10% of the population (1, 2). Globally, the numbers are even more impressive: 370 million with diabetes predicted to grow to 550 by 2030 (3). This entails that as a disease, type-II diabetes (90% of diabetics) is one of the fastest growing causes of death, now in close competition with the well-established leaders, cardio-vascular disease and cancer, that each account for 25% of deaths in more or less all industrialised countries.Insulin-resistant diabetes is very similar to both vascular disease (cardio and cerebro) and cancer, as well as intestinal, kidney, pancreatic and liver disease, arthritis, Parkinson's and Alzheimer's, in the sense that it is also a degenerative disease that develops over a lifetime, or at least over several decades. It is, however, quite different from all other chronic degenerative diseases because it is, in a way, the ultimate degenerative disease, in which the occurrence of all others increases markedly, and in some cases two to four times (4). That's not 10 or 15%, this is 200 to 400% more!For this reason alone, it seems clear that all these degenerative conditions are intimitely related, and that furthermore, understanding insulin-resistant diabetes will most definitely give us keen insights into the genesis of degenerative diseases in general.What boggles the mind is that, in a very real sense, we understand precisely and in exquisite detail how and why insulin-resitant diabetes develops, how and why it is related to all other degenerative diseases, and consequently, both how to prevent diabetes and all disease conditions for which it is a proxy, and why what is needed to achieve this actually works (5, 6).In fact, type-II diabetes can be cured; not just controlled or managed, but cured; not just partially or temporarily, but completely and permanently. And this, in a matter of weeks.This may seem simply impossible to the millions of suffering diabetics that live with their disease for years and more often decades, but it is the plain and simple truth, which has been demonstrated by more than one, but unfortunately rather few exceptional health care practitioners, already several decades ago by Robert Atkins (7), and more recently by Ron Rosedale and Joseph Mercola, for example (8, 9), in a remarkably repeatable, predictable and immensely successful manner on most probably tens of thousands of people by now.About insulin and glucose (or should it be glucose and insulin)Insulin is a master hormone one of whose important roles is to regulate uptake of macronutrients (carbs, proteins and fats) by facilitating their crossing the cellular membrane through channels guarded by insulin receptors, from the bloodstream into the cell, either for usage or storage. It is for this role that insulin is mostly known.However, arguably insulin's most important and critical role is the regulation of cellular reproduction and lifespan, a role which is, as amazing as it may seem, common to all animals that have been studied from this perspective, from microscopic worms to the largest animals.As such, insulin is a master and commander for regulating reproduction and growth in immature and therefore growing individuals, and regulating lifespan and ageing in mature and therefore full-grown adults (10).Insulin is absolutely essential to life because in its absence cells can neither use glucose---a most basic cellular fuel, nor reproduce correctly---making growth impossible. It is, however, needed in only very small amounts. Why? Because insulin is very damaging to tissues and especially blood vessels, something that has been well known for a long time (look at this short review on the role of insulin in atherosclerosis from Nov 1981---that's 32 years ago!, and you'll see what I mean.)Insulin is secreted by the beta cells of the pancreas in response to glucose concentration inside of these. As blood passes through the pancreas, these special cells that produce and store insulin, sense how much glucose there is by taking it in, and release insulin into circulation proportionally. This release is pulsed (while eating, for example) with a period of between 5 and 10 minutes, but only in response to blood sugar concentration, meaning that insulin is released only if blood sugar rises above the individual's threshold, which depends on the metabolic and hormonal state of that individual.However, it is important to note that pretty much no matter what the metabolic or hormonal states may be, eating fat and having fatty acids circulating in the bloodstream does not stimulate the release of insulin, while eating protein, in particular the animo acids arginine and leucine, does, albeit a lot less than glucose. This is because insulin is generally needed for cells to take in and use amino acids.An insulin molecule that has delivered a nutrient to a cell can be degraded by the cell, or it can be released back into the bloodstream. A circulating insulin molecule will be cleared by either the liver or the kidneys within about one hour from the time of release by the pancreas.Exposure to most substances, including lethal poisons such as arsenic and cyanide, naturally and systematically decreases sensitivity, or from the reverse perspective, increases resistance to it (as demonstrated by generations of Roman emperors and their relatives). This applies to cells, tissues and organs, and happens in the same way for biochemical molecule like messenger hormones, for the one that concerns us here, insulin. Thus, as cells are more frequently and repeatedly exposed to insulin, they lose sensitivity and grow resistant to it.Insulin primarily acts on muscle and liver cells where glucose is stored as glycogen, and on fat cells where both glucose and fats are stored as ... fat, of course. Muscle cells grow resistant first, then liver cells and in the end, fat cells. Fortunately or unfortunately, endothelial cells (those that line the blood vessels), do not become resistant to insulin, and this is why they continue to store glucose as fat, suffer severely from glycation, and proliferate until the arteries are completely occluded and blocked by atherosclerotic plaques.What happens when a large portion of the muscle and liver cells, and enough of the fat cells have become insulin-resistant? Glucose cannot be cleared from the bloodstream: it thus grows in concentration which then stays dangerously high. This is type-II, adult onset, or most appropriately called, insulin-resistant diabetes.Unnaturally high glucose concentrations lead to, among other things, increased blood pressure, extremely high rates of glycation (typically permanent and fatal damage) of protein and fat molecules on cells throughout the body, heightened stimulation of hundreds of inflammatory pathways, and strongly exaggerated formation of highly damaging free radicals, which, all in all, is not so good. This is why insulin is secreted from the pancreas so quickly when glucose is high in the first place: to avoid all this damage and furiously accelerated ageing of all tissues throughout the body.The five points to remember

  1. Insulin is a master hormone that regulates nutrient storage, as well as cellular reproduction, ageing and therefore lifespan.
  2. Insulin is vital to life, but in excess concentrations it is highly damaging to all tissues, especially blood vessels.
  3. If blood sugar is high, insulin is secreted to facilitate the uptake of the glucose into cells, but at the same time, because it is present, also promotes the storage of amino and fatty acids (protein and fat); if blood sugar is low, insulin is not secreted.
  4. Chronically high blood glucose is remarkably damaging to the organism through several mechanisms that are all strongly associated with degenerative disease conditions in general.
  5. Chronically high blood glucose concentration leads to chronically high insulin concentration; chronic exposure to insulin leads to desensitisation of muscle, liver and fat cells, and, in the end, to type-II or insulin-resistant diabetes.

And in this succinct summary, in these five points to remember, we have the keys to understanding not only how diabetes develops and manifests, to understand not only the relationship between diabetes and other degenerative diseases, but also to understand how to prevent and cure diabetes as well as degenerative conditions in general.And I'm suppose to say ...But you already know what I'm going to say:Because the basic, the underlying, the fundamental cause of insulin-resistant diabetes is chronic over-exposure to insulin, it means that to prevent---but also reverse and cure it---what we need is to not have chronic over-exposure to insulin. And this means to have the very least, the minimal exposure to insulin, at all times, day after day.The good news, which is indeed very good news, is, on the one hand, that it is utterly simple to do and accomplish, and on the other, that almost independently of how prone we are to insulin resistance (genetically and/or hormonally) or how insulin-resistant we actually are right now, insulin sensitivity can be recovered quite quickly. And here, "quite quickly" means in a matter of days, which is truly remarkable in light of the fact that our state of insulin resistance grows over decades, day after day, and year after year. It is rather amazing, miraculous even, that the body can respond in this way so incredibly quickly.Now, type-II diabetes is nothing other than extreme insulin-resistance. Naturally, the longer we are diabetic, the more insulin-resistant we become. But unbeknownst to most (almost all MDs the world over included), if your fasting blood glucose is higher than 75-80 mg/dl or your insulin higher than 5 (mU/L or microU/ml), then the muscle and liver cells are insulin resistant. And the higher the insulin, the more resistant they are. In fact, if you have any amount of excess body fat, your cells are insulin resistant. And the more body fat, especially abdominal but also everywhere else, the more insulin resistant they are.Because insulin sensitivity is lost gradually over our lifetime through daily exposure, some consider that everyone is becoming diabetic more or less quickly, and that eventually, if we live long enough, we all become diabetic. But this is only true in a world where virtually everyone suffers from chronic over-exposure to glucose and insulin. It is not true in a world in which we eat and drink to promote optimal health.In practice, because basically everyone is more or less (but more than less) insulin-resistant, concentrations around 10 mU/L are considered normal. But when I wrote earlier that insulin is vital but needed in very small amounts, I really meant very small amounts: like optimally between 1 and 3, and definitely less than 5 mU/L (or microU/mL; and the conversion from traditional to SI units is 1 mU/L = 7 pmol/L).So how do we do it?You already know what I'm going to say:Because insulin is secreted in response and in proportion to glucose concentration, when it is low, insulin is not secreted. Therefore, insulin sensitivity is regained by completely eliminating insulin-stimulating carbohydrates. This means zero simple sugars without distinction between white sugar, honey or fruit; zero starchy carbs without distinction between refined or whole grains, wheat or rice, bread or pasta, potatoes or sweet potatoes; and zero dairy, which triggers insulin secretion even when sugar content is low. It also means minimal protein, just enough to cover the basic metabolic needs (0.5-0.75 g/kg of lean mass per day). Consequently, it means that almost all calories come from fat---coconut oil, coconut cream, animal fats from organic fish and meats, olive oil and avocados, as well as nuts and seeds---and that the bulk of what we eat in volume comes from fibrous and leafy vegetables.And what happens? In 24 hours, blood glucose and insulin have dropped significantly, and the metabolism begins to shift from sugar-burning to fat-burning. In 48 hours, the shift has taken place, and the body begins to burn off body fat stores, while it starts the journey towards regaining insulin sensitivity. In a matter of days during the first couple of weeks, the body has released a couple to a few kilos of water and has burnt a couple to a few kilos of fat. We feel much lighter, much thinner, much more flexible and agile, and naturally, much better. In four weeks, blood sugar and insulin levels are now stable in the lower normal range. All of the consequences and side effects brought on by the condition of insulin-resisitant diabetes decrease in severity and amplitude with each passing day, and eventually disappear completely. In eight weeks, the metabolism has fully adapted to fat-burning as the primary source of energy, and we feel great. (See 11 for more technical details.)The result is that within a matter of weeks, we are diabetic no longer: we have regained insulin sensitivity, and have thus cured our insulin-resistant diabetes. Over time, a few months or maybe a few years, feeling better with each passing day, there remain very few if any traces of our diabetes, and we live as if we never were diabetic. Amazing, isn't it? So simple. So easy. So straight-forward. And yet, still so rare.And what about the relationship between diabetes and heart disease, diabetes and stroke, diabetes and cancer, diabetes and Alzheimer's? Why do diabetics suffer the various health problems that they do, like high blood pressure, water retention, blindness, kidney disease, and how do those come about? What of the lifespan-regulating functions of insulin, how does that work? All these interesting and important questions and issues will have to wait for another day. This article is already long enough.If you enjoyed reading this article, please click "Like" and share it on your social networks. This is the only way I can know you appreciated it.

Read More

Updated recommendations for magnesium supplementation

Daily magnesium supplementation is definitely more than a no-brainer, it is really very important, and this, for everyone. I hope that I managed to convey just how important it really is in Why you should start taking magnesium today,Treating arthritis I, as well as in At the heart of heart disease. In terms of supplementation, however, I would like to refine my recommendations.Nigari, or magnesium chloride, is excellent because it is inexpensive and easily absorbed. I continue to stand by this, and also continue to use it very regularly. However, I now only use it trans-dermally (on the skin), and recommend you do the same. The reason for this is very simple. Taking it internally, is fine, but because absorption goes through the digestive system, the most that will be absorbed is estimated at 25%, and the rest will be eliminated.And how will it be eliminated? Well, naturally, through the stools. And I, after using a 2% nigari-water solution orally for supplementation for several months (even with some breaks as recommended by proponents of this manner of magnesium supplementation), found that my colon gradually became more and more irritated (which could be felt when passing stools and wiping). When I would stop supplementation for a few days, the irritation would go down; when I started again, it would come back. Therefore, after a couple of times checking this, it became clear that it was indeed oral supplementation with magnesium chloride that was the cause of the irritation in the colon.But why even bother taking magnesium chloride orally when it is far better absorbed through the skin? Magnesium oil (20-30% nigari-water solution) that you must leave on for 30 minutes, works great, but the most pleasant is definitely a 30 minute bath spiked with a cup of nigari flakes. This is without a doubt the most effective and most agreeable way to supplement, while ensuring maximum absorption by the body of the magnesium ions so importantly needed by cells in tissues throughout the body.Having said that, I recognise that having baths every day is time consuming, only really tempting when the weather is cool, and also wasteful in terms of water usage. Therefore, we don't have baths when it is hot, and should restrict it to a max of three times per week in the cold season, using the least amount of water, and having really short showers on the days in between in order to keep water consumption as reasonable as we can. In the end, magnesium oil is far more environmentally friendly, because it works all year around and does not result in accrued water consumption.As an aside relating to hot water usage and energy efficiency, because heat loss is always directly proportional to the difference in temperature between 'inside' and 'outside' , we should set the temperature on our hot water heater to the minimum useable temperature. This minimise heat loss, and consequently, energy consumption for water heating. I have determined that temperature to be 41-42 C. These temperatures are also perfect to wash the dishes, wash your hands or face, shower, and also to run a bath that is hot (but not too hot) when you get in, and after 25-30 minutes is still hot enough for you to feel comfortable in the water without any hint of feeling cold, but not too hot such that you can't stand it any longer, or be sweating for half an hour after you've gotten out. (Actually, 40 C is perfect for a shower, dishes, hands and face, etc, we need 1 or 2 degrees more for a bath due to heat losses into the tub and air.)Naturally, the exact ideal hot water temperature is a personal thing that depends on many factors, surely most importantly on body composition and especially basal body temperature, which in turn depends on metabolism. In my case, basal body temperature is as low as can be, since my metabolism runs almost exclusively on fat, and you'll remember that fat burns cool while carbs and protein burn hot. Anyway, you need to experiment a little, but I'm pretty sure that you will find your ideal hot water temperature between 40 and 43 C.Because magnesium is water soluble and used up as it is needed every day throughout the day, it is necessary to supply the body with it on a daily basis. Naturally, eating foods rich in magnesium is essential (almonds and greens are the best), this is typically not enough, and oral supplementation is quick and easy. Fortunately, the perfect magnesium supplement is now available. This is ReMag, designed and marketed by Dr. Carolyn Dean (the doctor who wrote The Magnesium Miracle), and who guarantees that it's 100% absorbed by the cells because it is in a form that is small enough to pass through the 400-500 pico metre sized ion channels that regulate mineral absorption and excretion through cell walls, and therefore, that none of it is eliminated through the digestive system as are most forms of magnesium supplements. (You can read her e-book about it here, and watch this recent video on Mercola's site.)So, these are my updates recommendations for magnesium supplementation:

  1. Magnesium oil on the skin for a couple of months to quickly replenish cellular magnesium levels,
  2. Bath with 1-2 cup of nigari flakes, once or twice a week, and
  3. L-Threonate (liposomal) or ReMag (pico sized) taken orally.

This is really important for everyone, but crucial for any person suffering from any kind of illness or disease condition whatsoever.If you enjoyed reading this article, please click "Like" and share it on your social networks. This is the only way I can know you appreciated it.

Read More

B12: your life depends on it

There are very few nutrients as crucial to our well-being as vitamin B12. The reason why this is so is that vitamin B12 is essential for cellular energy metabolism, gene transcription, and nervous system function. This vital role at the cellular level is not restricted to only some tissues and organs: it is vital for every single cell of every tissue and every organ.For the nervous system, both for the central nervous system---our brain---and the peripheral nervous system---the spine and entire network of nerves connected to the brain and coursing through the whole body---vitamin B12 is essential in building, maintaining and repairing the myelin sheath that covers every nerve to ensure protection and proper nerve signalling. It is, in fact, the consequences of B12 deficiency on the nervous system that most often betray this very serious problem.Everyone should supplement and maintain blood levels of B12 in the range from 600 to 2000 pg/ml in order to avoid and, if this is the case, help recover from the wide range of problems that result from B12 deficiency or insufficiency. Health care practitioners: this is the first thing you should check for every patient that comes in, independently of their age or condition.What is vitamin B12 and how is it absorbed?B12 or cobalamin is a large molecule whose central atom is cobalt, and around which are arranged various other compounds. To be active in the body, the cobalamin molecule must be in one of two enzyme forms: methylcobalamin or adenosylcobalamin, both of which must be in a charge state of +1. Even though cobalamin can exist in two other charge states, +2 and +3, neither of these is bio-active. Its most powerful antagonist is nitrous oxide (N2O; laughing gas), which continues to be commonly used as an anaesthetic agent during surgical operations, because it inactivates the molecule by modifying the cobalt ion from a charge state of +1 to one of either +2 or even +3.Cobalamin is produced in the gut of animals by specific bacteria that make part of the intestinal flora. Although this can also be true for humans, we have mostly relied on animals both by eating them and products derived from them, like eggs and dairy. In animal foods, cobalamin is always bound to protein from which it needs to be separated in order to be used. This, in turn, can only be done starting in the highly acidic environment of a well functioning stomach that secretes enough hydrochloric acid, but also enough Intrinsic Factor and pepsin.Cobalamin is carried into the duodenum---the first part of the small intestine---by salivary B12 receptors that are then broken down by pancreatic protease. This allows the free B12 to attach to Intrinsic Factor, and make its way to the ileum---the very last part of the small intestine---where it penetrates the mucosal wall for absorption. Finally, the free cobalamin latches onto the plasma transporter Protein Transcobalamin II whose function it is to carry it to the cells throughout the body. Any excess, unneeded at any given time, is carried to the liver where it is stored.Where do we get B12?That herbivores like sheep, goats and cows, which thrive when they eat only grass, do not suffer from B12 deficiency, but that most of us humans tend to (estimates from various large scale studies range between 40 and 80%), points to two key issues at the heart of this problem:One, we have evolved and survived as a species over several million years by eating animals. It is believed by some that it was, in fact, the very eating of animal foods, maybe specifically bone marrow, which was, on the one hand, the only left overs after carnivore predators like lions, and then all other scavengers but predators for us like wolves and jackals had eaten all they could, and on the other, the only thing that only humans could get to by breaking apart the bones, that allowed the brain to grow in size over a relatively short evolutionary period, seting us apart from our our primate ancestors and cousins. Whatever the case may be, the organism of the human species as a whole grew accustomed and became reliant on an external supply of vitamin B12 from animal sources.Two, it is most certainly the case that even with the healthiest, let's even say ideal or perfect intestinal flora, as humans we will definitely have a very different flora than those of the herbivore animals we domesticated, and it will arguably always be much less capable and much less efficient at producing cobalamin from any of the plant foods we do eat. Moreover, if B12 is manufactured by some of the bacteria in our perfectly healthy colon---the large intestine, it will still not easily make it into circulation because, as we saw, absorption of cobalamin takes place in the ileum in the last part of the small intestine, which is upstream from the large intestine. The manufactured B12 would somehow have to migrate backwards from the colon to the ileum, a most likely very difficult thing to do.The first point is supported by ample archeological, anthropological, as well as evolutionary biological evidence. In fact, it turns out that our hominid ancestors have most certainly lived for the bulk of our evolutionary history during periods of glaciation where the land over most of the Earth's surface was covered in ice. This implies that there was a marked absence of plant life in most places on Earth, and therefore an absolute reliance on animals for survival, eating virtually only animals, which in turn also ate virtually only other animals and fish, which ate smaller fish, and on down the food chain to those feeding on sea-borne plant foods. The Inuits, who basically live on whale blubber, are the perfect example of such a scenario. But this could well have been the scenario for a lot of the humans that populated the Earth, and for a good portion of our history spanning the last 2.5 million years.The second is hypothetical, but on firm footing given that it is indisputable that the gut flora of a herbivore will be different---substantially different---from ours, but also that we simply cannot survive for very long on greens alone as do sheep, goats, cows and all other herbivores. Furthermore, in actual fact, most humans have a dysfunctional digestive system, with heavily compromised and impaired intestinal flora. As a consequence, even those who eat adequate or even large amounts of B12-rich animal foods, usually cannot benefit from it because the cobalamin simply doesn't make it into the bloodstream for any one of several possible impediments along the ingestion-breakdown-absorption chain.This is not to say that our digestive flora cannot produce some B12 from plant-based foods, but the evidence shows us that it definitely cannot produce enough, whatever the reason: studies have shown that although B12 deficiency is of the order of 40% in the general omnivore population, it is 50% in vegetarians, and up to a staggering 80% in long-term vegans (see Chapter 6 of Could it be B12? and references therein).Why is B12 deficiency such a big deal?Well, let's ask another question instead: What would happen if the myelin sheath that covers the nerves in our body---peripheral, spinal and brain---were to deteriorate?Neurological symptoms would include: numbness, tingling and burning sensations in the hands, fingers, wrists, legs, feet, or truncal areas; Parkinson-like tremors and trembling; muscles weakness, paraesthesia and paralysis; pain, fatique and debility labelled as chronic fatique syndrome; shaky legs, unsteadiness; dizziness, loss of balance; weakness of extremities, clumsiness, twitching, muscle cramps, lateral and multiple sclerosis-like symptoms; visual disturbances, partial loss of vision or blindness. But the list goes on.Psychiatric symptoms? Confusion and disorientation, memory loss, depression, suicidal tendencies, dementia, Alzheimer's, delirium, mania, anxiety, paranoia, irritability, restlessness, manic depression, personality changes, emotional instability, apathy, indifference, inappropriate sexual behaviour, delusions, hallucinations, violent or aggressive behaviour, hysteria, schizophrenia-like symptoms, sleep disturbances, insomnia. And here again, the list goes on.At the cellular level, every cell would be unable to adequately produce energy, be it from glucose or from fat. We can easily extrapolate and imagine what it would mean for the organism as a whole to have a lack of, or severe debility in the energy available to it at the cellular level, and this, for the trillions of cells throughout. This would have a most profound effect on everything that we do, and everything that the body does throughout the day and night.Now consider a yet deeper level: in the nucleus of every cell, where genes are protected and cared for, a problem in the very transcription and replication of genes---these delicate operations that are necessary and vital for the continual renewal, repair and reproduction of cells---which must and do take place throughout our life, this long succession of infinitesimal instants the perception of which is almost universally absent from consciousness, but for which the timescale is, in fact, very long at the cellular level, where movements and interactions take place at phenomenal speeds. Vitamin B12 is absolutely essential for this too. And if it's missing? Unintended, unplanned, and unwanted genetic mutations from errors in transcription. This means problems; very serious problems.Who should be concerned about all this?The short answer is: everyone. This means you, but also your kids as well as your parents. It means infants, toddlers, children, teenagers, young adults, mature adults, the middle aged, the elderly, and the oldest among us: absolutely everyone.For the longer answer, it would appear to be the case that we are, or at least should be, born with a good B12 reserve, and that, as it is used over time, the amount in the body and blood slowly decreases as the reserves get used up and eventually depleted. Some consider this to be the normal state of affairs. This inevitably implies that those at greatest risk of suffering from B12 deficiency are the oldest, and also that the older we get, the greater our chances of becoming victims of the effects of this deficiency. And this is indeed what we find: practically everyone above the age of 60 is B12 deficient, and more often than not, severely deficient (serum B12 < 200 pg/ml).It is therefore not really surprising that every single behavioural characteristic---intellectual, psychological, emotional, physiological and physical---associated with ageing and its multiple manifestations in the elderly, senior moments in all their different forms: memory problems, disorientation, inability to concentrate or even pay attention, frailty, weakness, unsteadiness, loss of balance, etc, etc, are all typical symptoms of B12 deficiency.Could it be that all these characteristics of old age are actually the characteristics of B12 deficiency? Could it be that if we didn't let B12 levels drop below 600 pg/ml and actively maintained them around 1000 pg/ml throughout life, that seniors would simply not manifest any of these signs of old age? Maybe. Maybe even most probably. What an entirely different world it would be: strong and healthy, energetic and vibrant, sharp and alert old people. Sounds great, doesn't it? And hard to imagine, isn't it? But wouldn't that be wonderful, for everyone, and especially for the elderly themselves?As alluded to a moment ago, we should be born with a large B12 reserve. It is of particular importance that we need to have a plentiful supply of B12 throughout our development in the womb, during infancy, and up to the 7 years of age. Why is it so important? Because our nervous system develops fastest while we are in our mother's womb, and then during infancy and as a toddler, until it reaches maturity by the time we are about 7, and because cobalamin is essential for this development.The complication, however, a point of crucial importance, is that only B12 consumed by the pregnant mother at first, the breast-feeding mother afterwards, and finally by the toddler can be used to ensure an optimal development and building of a healthy brain and nervous system. Even if the mother had good B12 levels before, during and following pregnancy, only fresh B12 can be used in the developing child. So, if she doesn't consume much or any during this critical period, the unborn child and infant will have only a meagre or non-existent supply of cobalamin, and consequently, impaired---often severely---brain and nervous system development.This is a very serious matter. In fact, for many infants, it is a matter of life or death. Or just barely less dramatic but maybe even worse in some respects, it can make the difference between a normally healthy brain and nervous system, and permanent developmental disability, both physical and intellectual, right down to a full or partial vegetative state for a whole lifetime.All of this shows why B12 deficiency tends to be not only transmitted, but to worsen in severity from one generation to the next, with all the negative consequences that come with it, but most notably those that affect the brain and all cognitive functions. Terribly sad and unfortunate as it is, numerous studies and reports on the babies of vegetarian but especially vegan and macrobiotic mothers have shown very serious neurological problems, developmental delays as severe as stunted brain growth and death, but also that even mild deficiencies in infancy are associated with seriously impaired cognitive performance in adolescence and adulthood. I cannot stress this enough: B12 deficiency is really very serious.Now, between the oldest and the youngest there is everyone else. If we are born with an excellent B12 status, then we are lucky and likely to be able to make it to old age without any apparent problems in this regard. If we are born B12-deficient, then we are most certainly likely to suffer from it greatly, and this, much sooner than later. And if we are born with anything in between, an intermediately good or bad B12 status, then problems will appear later in life, or sooner, depending on many other factors, but most importantly on how much cobalamin we consume, and how well it is absorbed. Consequently, manifestations of cobalamin deficiency can appear at the age of a few months or a few years; as a child or teenager; as a young adult or person in their prime; near retirement or in old age; or it may also never become apparent. Unfortunately, this condition is continuously growing in importance, the people it affects growing in number, and the reported cases growing in severity.Unfortunately, and extremely sadly for way too many people whose bodies, minds and lives are destroyed by an undiagnosed deficiency, B12 is not something that doctors routinely check or know much about. Most of them believe that it will appear in the total blood count (TBC) panel either as enlarged (megaloblastic anaemia) or fewer red blood cells (pernicious anaemia). But by the time you get there, you have been suffering the ravages of B12 deficiency for a while already, and have thus almost certainly also already suffered permanent neurological damage. So, for your sake, don't wait for your doctor to notice this. Instead, teach them about it. You will be doing them and their patients an immense favour.Closing with the good newsIt is really easy to prevent and avoid becoming cobalamin deficient, but also to correct a deficiency that exists or even one that has persisted for several years or decades, no matter if you eat animal products or not, want to or not, think that you should or not. We must, very simply, check our B12 status regularly by measuring three markers---serum B12, plasmahomocysteine (Hcy), and urinary methyl-malonic acid (MMA)---and make sure to supplement in order to raise and maintain B12 levels in the range between 600 and 2000 pg/ml, with concentrations of Hcy and MMA as low as possible. Pregnant and nursing mothers should maintain levels above 1000 pg/ml to ensure healthy nervous system development in their children.(Both Hcy and MMA are toxic byproducts of protein metabolism that must be converted to benign and/or useable forms, the animo acid methionine, for example, by the action of B6, folic acid (B9) and especially B12. Here is a good information-dense compilation of B12/Hcy/MMA publications, and transcript of an interview with John Dommisse, a psychiatrist and B12 expert, who published the above quoted serum B12 range as optimal in this authoritative paper cited in Could it be B12? where I read about it.)Supplementation should be with methylcobalamin---not cyanocobalamin---and should be as aggressive as needed depending on the result of the assessment. In cases where B12 levels are below 200 pg/ml, we should request methylcobalamin injections to be administered daily for 5-6 days, and then weekly until B12 reaches 2000 pg/ml. It should be maintained there at least until Hcy and urinary MMA have dropped significantly, and then monitored and maintained around 1000 pg/ml.For anything else between 200 and 600 pg/ml and/or elevated Hcy or MMA, methylcobalamin patches are an effective way to get B12 levels up. In addition, oral supplementation, although the least effective of the three, still works surprisingly well compared to other supplements, and obviously cannot possibly hurt; it can only help. I recommend doing both patches and oral supplements until levels are around 1000 pg/ml, and then maintaining them with either one.Finally, and very important to know is that you cannot overdose on methylcobalamin B12: not one negative physiological side effect has been reported or is known from methylcobalamin supplementation. You cannot do yourself or anyone any harm by taking B12 as methylcobalamin in large quantities for a long time; you can only do yourself and others harm by allowing a deficiency, as mild as it may be, to develop or linger. This applies to everyone.If you enjoyed reading this article, please click "Like" and share it on your social networks. This is the only way I can know you appreciated it.

Read More

A green healing protocol

The digestive system is at the centre of everything that relates to our health. As this is so, gravely ill persons generally also have gravely compromised digestive systems. I would go as far as saying that everyone suffering from any kind of chronic or degenerative health problem has impaired digestion. And the more severe the health disorder, the more compromised the digestive system is likely to be.Furthermore, I would also go as far as saying that it is usually the dysfunction of the digestive system that comes first, and that it is the consequences of this dysfunction which, over time, lead to more serious complications, and more severe health disorders. Therefore, the most important and most fundamental in the healing process is the healing of the digestive system. This must always come first, before anything else, and everything else in the healing process can only but flow from it.The proposed protocol is therefore intended for anyone suffering from any kind of chronic and/or degenerative disease condition, from the most gravely ill to those suffering only mildly, with the assurance that, given the absence of pharmaceuticals and invasive medical procedures, and the reliance on solely natural or naturally derived foodstuff, only benefits can come from it, and, as I strongly believe, immense potential for healing and recovery.An obvious difficulty comes from the fact that in order to promote healing of the bodymind, it is necessary to provide it with the best, most appropriate nutritional support. But since everything that we may provide through eating or drinking goes through the digestive system in order to become available to the organism as a whole, when the digestive organs are compromised, this process is similarly compromised.So, how do we do it? We do it by minimising as much as possible the work that the digestive system needs to do to extract the nutrients from what we consume, while at the same time providing the digestive system with what it itself needs for healing: We minimise digestive stress and maximise intestinal healing.The two most crucial elements in digestive health are the intestinal flora, and the integrity of the lining through which absorption occurs from the intestine into the bloodstream. The two most damaging elements are antibiotics and chemicals that destroy the flora, and chronic intestinalacidosis and the accompanying inflammation and malabsorption that ensue, eroding and damaging the lining. It is therefore these two fundamental issues that must be addressed by replenishing the flora and alkalising the gut.Probiotics to replenish the floraThe organism depends intimately and completely on the trillions of bacteria and other micro-organisms that populate and live in our gut; they outnumber our own human cells 9 to 1. This symbiotic relationship is as old as life itself. Most do not know this. And those who have heard it, probably tend to forget about it, but it is truly essential, because without this relationship, without these bacteria and micro-organism on which our life depends, there would never even have come into existence complex living entities, let alone humans. This is where we start the healing process.For this, what we need to do is quite simple: we must supplement with the best, most effective and most biologically appropriate probiotics, intensely at first, and then less so, until the gut flora is perfectly established, at which point it will sustain and maintain itself without the need to supplement on a daily basis.I know of two excellent probiotics on the market, both of which have demonstrated excellent results. One of them is soil-based (Prescript-Assist), and the other is spore-based (MegaSpore Biotic). I personally take Prescript-Assist, which I like very much, but am very interested in trying the other, which I will at some point soon.Whichever one you chose, you cannot make a mistake. Read the information the manufacturers provide on their web site, get the one you feel more inclined to, and start taking one capsule three times per day: morning, noon and night. Do this for 4 weeks. After that period, you can decrease to two capsules per day, morning and night. Do this for as long as the healing process lasts, probably 3 to 6 months. Once you have recovered, take only one capsule in the morning to ensure a daily replenishing and maintenance of the gut flora. You can never go wrong by taking more probiotics: if they are not needed in the gut, they won't have a noticeable positive effect, but it is sure that they will never have a negative effect.Green juices to alkaliseJuicing and drinking green vegetables and grasses is the most effective way to provide the digestive system and the organism a wonderfully rich array of micronutrients of all kinds---minerals and vitamins, amino acids and enzymes, innumerable phytonutrients, and lots of chlorophyll---all of them immediately and easily absorbable, and made available in the bloodstream to the whole body literally within minutes: maximising nutrients, minimising digestive stress.Juicing and drinking green vegetables and grasses is also the most effective way to alkalise the digestive system, the blood, and over time, all the tissues of which the bodymind is made. This is extremely important for everyone, but it is truly vital for the gravely ill. It is only by alkalising the digestive system that it can begin to recover for the state of chronic acidosis, and subsequently begin to repair itself to eventually heal. This must be crystal clear:I firmly believe that there is no way to heal any degenerative chronic disease condition, no matter what it is, without healing the digestive system. And there is no way to heal the digestive system without alkalising it deeply and thoroughly, day after day, month after month, and in fact, year after year.The reason for this is very simple: pathogenic intestinal microorganisms in general both thrive in and promote a highly acidic environment, whereas beneficial intestinal microorganisms much prefer but also promote an alkaline environment; pathogenic intestinal microorganisms thrive and depend on simple sugars that allow them to multiply and proliferate but also to produce ever increasing amounts of lactic acid from the anaerobic oxidation of the sugars that fuel them, whereas beneficial microorganisms do not.Coconut oil to heal and nourishCoconut oil is a miracle of nature: it is the richest known source in nature of lauric acid (about 50% of it), which is a natural and powerful anti-fungal, anti-viral and anti-baterial, proven to be so in the lab on a wide variety of common pathogens. At the same time, lauric acid is exceptional in terms of nutrition because it is a medium chain fatty acid that does not require bile to be emulsified, is easily released from the triglyceride structure of oil in the liver, and is then free to circulate throughout the body in the bloodstream to be used as cellular fuel, without being stored in fat cells as other longer chain fatty acids are.If this was not enough to amaze and convince you that coconut oil is indeed a miracle of nature, it has been shown that coconut oil is great for thyroid health, naturally regulating down hyperthyroidism and regulating up hypothyroidism; great for cholesterol metabolism in regulating up or down lipoprotein production and balance; great for inducing and maintaining nutritional ketosis even when insulin-stimulating carbs are not completely eliminated, which is very helpful and beneficial for all those that must remain in this state of ketosis for their treatment of epilepsy and other kinds of nervous system disorders with seizures, but who would like to have some carbs sometimes; and finally, coconut oil (and the ketones derived from it) has been shown to help stop and reverse plaque formation in cerebral arteries, as well as degeneration of brain cells in Alzheimer's and dementia patients.These properties of coconut oil (and lauric acid) make it the absolute best oil to consume in general, for most of your needs in the kitchen, but most importantly for what concerns us here, the absolute best in promoting healing of the digestive system, while nourishing the body by providing the ideal cellular fuel.Putting it all togetherAs explained above, to maximise global healing potential, we must maximise the healing of the digestive system. For this, we must replenish the intestinal flora with probiotics, while nurturing an intestinal environment that is beneficial to health-promoting micro-organisms but hostile to acid-forming and disease-causing micro-organisms. This is done my alkalising the intestinal tract, eliminating digestive stress, and maximising micronutrient supply and absorption by the intestines with green juices and coconut oil.Therefore, this healing protocol in its most effective and also most radical form, relies on drinking only green juices, optionally augmented with a powdered superfood blend, to which is added a table spoon of melted coconut oil, blended into the juice, at least twice per day, but three or four times if necessary or preferred. Since the juice itself is both alkalising and alkaline, the oil can be blended smoothly into it perfectly well.Adding the coconut oil enhances the benefits of the green juice by ensuring maximum absorption of all minerals and anti-oxidants that depend on the presence of fat in order to make it into the bloodstream. This is established for minerals and anti-oxidants, but it very likely also the case for other micronutrients: the concentration of these healthful micronutrients in the blood, appears to be more or less proportional to the amount of fat in the digestive tract.A slightly less radical form would include eating of crunchy and watery vegetables like cucumbers, celery, kohlrabi with salt for snacks, and avocados as more filling, meal-like food.The protocolThis programme that can be followed for a few days, a week, two weeks of more, up to several months, adjusting coconut oil intake to supply more fat energy if required. (People can sustain water healing fasts for up to 45 days, so this protocol can be sustained for months). You can also drink more mineralised water at any time.There are minimal amounts of protein, and zero animal protein or fat. These are both important for human health, and therefore should be part of everyone's diet. But they are also both highly acid-forming and the cause of digestive stress, especially the protein. This healing protocol excludes these to maximise alkalisation, cleansing and healing. It is nonetheless important that both animal fats and protein should be reintegrated into the diet afterwards, but always in relatively small amounts, particularly the protein of which we should not have more than about 25-30 g in one meal, and not more than 50-80 g per day, in two or three servings.If you are interested in doing this for a long period of time lasting several weeks to several months, you should, after the first week or two, add more calories, still mostly from fat, but also from protein, by including a can of coconut milk in two servings, late morning and late afternoon, to make it sustainable on the longer term. Naturally, all these adjustments depend entirely on your condition, aims, and maybe most importantly, on your motivation and discipline. Here is the protocol:

  • Around 7 or 8: Wake up and put on magnesium oil on legs, arms, belly and back, and keep on for at least 30 minutes before showering (see Why you should start taking magnesium today for details).
  • Then slowly drink 1 litre of water with 10 drop of Concentrace minerals. Take the one capsule of probiotics, one capsule of tulsi extract for adrenal support, and optionally 5 small pellets of chlorella and 3 large pellets of spirulina for maximising detox and regeneration.
  • Around 10: Green juice with coconut oil (and superfood blend). Make about 400 ml of juice using a combination of cucumber, fennel bulb, celery with the leaves, lots of chard and/or kale, and/or lettuce, some parsley if you want, a little piece of ginger if you want, and one kiwi with the skin (you can brush off the hairs if you want). When its done, add 1 tablespoon of melted coconut oil (I exclusively use Dr Goerg's), and blend for a few seconds.
  • Between 11 and 12 (optional): some crunchy and watery vegetables with salt.
  • Around 13: Green juice with coconut oil (and superfood blend), probiotics, tulsi, chlorella and spirulina
  • Around 16: Drink (slowly) 1 litre of water with 10 drop of Concentrace, the juice of two pressed lemons, half a teaspoon of salt, some stevia to sweeten, and two teaspoons of psyllium husks. Rinse your mouth with plain water between glasses of lemonade.
  • Around 18: Green juice with coconut oil (and superfood blend), probiotics, chlorella and spirulina, but no tulsi because it will probably keep you up at night, calm but awake.
  • Between 19 and 21 (optional): Crunchy vegetables and/or avocado with salt.
  • Before bed: Magnesium oil and keep for at least 30 minutes before showering.

B12 is vitalFinally, and extremely importantly, any and every healing protocol for the gravely ill, but also for the not-so-gravely ill, must absolutely include high-dose B12 supplementation that in the most extreme cases should be administered through daily (one week), then weekly (2 months) and then bi-weekly (as long as needed) injections of 1 mg hydroxocobalamin or methylcobalamin (better), but not cyanocobalamin. Alternatively, methylcobalamin patches can be used for fast and effective replenishing of B12 stores. Lastly, a high-dose (2000 microgram/day) methylcobalamin sublingual supplement can also be taken. There are zero known negative side effects of high-dose B12 supplementation.Blood concentration of B12 should be brought up to between 1000 and 2000 pg/ml and maintained at that level until full recovery is achieved (or as close to it as can be hoped for). You can read more about it in B12 for absolutely everyone.Final wordsIt is obviously not necessary to be ill in order to incorporate these healing tools into your daily routine. On the contrary, it is by doing so that we can prevent disease conditions from ever developing, nurturing the bodymind to optimal health.My wife, our son and myself, for example, drink green vegetable juices with melted coconut oil, lemon water with salt, stevia and psyllium husks, green powdered superfood blends, and take probiotics, tulsi, chlorella and spirulina, together with a few other supplements including B12, on a daily basis. The difference is that in this protocol, all highly acid-forming and damaging sugars and starches are strictly eliminated, but also all other solid foods, all of which require at least some work, and in particular also highly acid-forming complex proteins that require intense work on the part of the digestive system. This is done in order to really maximise the benefits of the deep alkalisation and the state of partial fasting with powerful nutritional support and zero digestive stress.Naturally, I strongly encourage everyone of you to also incorporate these elements of natural healing into your life, no matter how old you are or how healthy (you think) you are, but also to go further, and try following the strict protocol for 1, 2, 3 or even 5 or 7 days, every once in a while. You will really feel the difference.If you enjoyed reading this article, please click "Like" and share it on your social networks. This is the only way I can know you appreciated it.

Read More

Water, sugar, protein and fat

I'm not here to convince you of anything. I'm not here to debate things with you. And I'm not here to share and discuss views or opinions. I am here to talk about physiology, biochemistry, and what these can teach us about optimal health. In fact, I'm not even going to tell you anything about what you should eat and not eat, or drink and not drink. Instead, I'll leave you to deduce that for yourselves.The truth is that nothing we believe or think has any bearing or relevance to how things actually are: how the body works; how it responds to water or orange juice; to starch, protein and fat; to stress and relaxation; or to exercise and sleep. Everything about how the bodymind functions is determined by physiology and biochemistry.We certainly do not know or understand everything---far from it. But we do understand quite a lot, and what we do know and understand is enough to show us how to live in optimal health without suffering from any of the aches and pains, and ills and ailments that today plague modern societies throughout the world.Thirty minutes is not long enough for me to tell you everything I would like to. So, we'll restrict this talk to those basic points that I feel are most fundamental in beginning to understand the effects on the bodymind of what we eat and drink: we'll talk about water, sugar, protein and fat.So, you have the choice now to take the blue pill, get up, go back to your office, and believe whatever you want to believe. Or, to take the red pill, stay here, and see what I can show you of how things happen in the body when we eat or drink certain things.You're all ready, so let's start.WaterWater, as you will see, is extremely important. And so, I will spend quite a bit of time on it.Some people drink a lot of water, some drink less, and some drink hardly any. Why is that? Do you think some people need more water than others: that some need a lot and other don't need much?Have you ever wondered what happens when you drink a glass of water? Where does it go? What does it do? How long does it stay there?What's the connection between the water we drink and the urine we pee? How does the water go from our glass to our pee? Why do we pee? What do we pee? When do we need to pee? How does that work?How much should we drink? When should we drink? Is it important to drink at certain times and not at others? What happens when we don't drink? Is any of this important?Well, to start, a new born baby is about 90% water by weight. An old person on their death bed is about 50% water. And a healthy teenager or adult is around 73%. It has always been like this, and looking at this picture very simply, we can say that we should strive to remain around 73% for as long as we are alive, and the closer we get to 50%, the closer we are to death.In the digestive systemYou pick up a glass, fill it with fresh, pure water, raise it to your lips, and drink. The water goes straight into the empty stomach. There, it first hydrates the specialised cells that make up the stomach's lining and the layer of mucus that covers it, and then hydrates the pancreas. The water then moves into the intestine where it also hydrates the cells that form the lining, and the leftover starts to permeate through the intestinal wall into the bloodstream, which then carries it throughout the body. This takes about 30 minutes.The amount of water needed to hydrate the digestive system in preparation for a meal is one to two glasses or 200-500 ml, meaning that of the first two glasses you drink on the empty stomach in the morning or before a meal, little will make it to the bloodstream, because it is most important for the body's self-preservation to ensure, first and foremost, that the digestive system is well hydrated.You can check this for yourself: get up in the morning, go pee, drink one glass of plain water, and then wait and see how long it will take, and how much you will pee out; the next morning drink two glasses and see; and on the third morning, drink a whole litre instead, and see what happens.Why is the hydration of the digestive system so important? Because it is on it that the organism as a whole relies for its survival:If there is dehydration, the mucus layer of the stomach is thin and dry, and thus cannot protect the lining from the corrosive hydrochloric acid that is secreted to breakdown protein. The stomach wall gets damaged, and over time, this leads to stomach ulcers, and a stomach that simply doesn't work properly anymore, incapable of digesting protein into the essential amino acids most importantly needed for proper brain function, but for many other things as well.If there is dehydration, the pancreas cannot produce its alkaline bicarbonate solution needed to neutralise the acidic chyme that goes from the stomach into the first part of the small intestine. This leads to pH imbalance and damage to the intestinal wall, which over time also leads to ulcers, leaky gut, malabsorption, poor elimination, bacterial and fungal overgrowth, and systemic toxicity.In the bloodOK. Now, what happens in the blood? Our blood is made of red blood cells (45%) and white blood cells and platelets (0.7%) floating in blood plasma (54.3%). Blood plasma shuttles nutrients to cells around the body, and transports wastes out: it consists of 92% water, 8% specialised (mostly transporter) proteins, and trace amounts of solutes (things dissolved or floating in it).Although in trace amounts, the solutes, and especially sodium, are vital. The concentration of solutes in blood plasma is around 300 mmol/l (don’t worry about the units). In the highest concentration of all is sodium at 140, and in the second highest is chloride at 100. The sum of these is 240, and so from these numbers alone, we see that blood plasma is more or less just salty water.Amazing isn't it? We're told to avoid salt because it supposedly causes high blood pressure and heart disease, but when we look at our own blood, among all the solutes, it is sodium and chloride---the salt---that are and need to be in the highest concentrations!FiltrationAlright, what keeps everything in balance, what keeps tabs on the water content, on the sodium content, on the chloride, on the bicarbonate, and on every other electrolyte or solute? It's the kidneys. What keeps a very close watch on blood pressure, and adjusts and controls the blood's consistency, thickness and viscosity? It's the kidneys. And what excretes the toxic metabolic wastes urea, uric acid and creatinine, produced more or less continuously in a normal functioning body? It's the kidneys: so important, yet so under-appreciated, and so rarely considered or given the importance and attention they deserve.You have 4-5 litres of blood in your body (I have about 4, and Uwe over here has about 5). One quarter of all the blood coming out of the heart flows through the kidneys: this is on average 1.2 litres per minute, which amounts to more than 1700 litres per day. And thus, every drop of blood goes through the kidneys about 400 times each and every day!To maintain flow and pressure more easily, only 20% of the blood flowing through the kidney is filtered (that’s 240 ml or about a cup per minute, and thus 340 l/day). Because half of the blood's volume is water, this amounts to a total of 850 (1700/2) litres of water; filtering 20% means that 170 litres of water are filtered each day.Therefore, if one litre of urine is produced in 24 hours (that’s unfortunately pretty typical), then close to 169 out of 170 of these litres of water are reabsorbed: a reabsorption efficiency of 99.4%! Drinking a bit more and producing two litres of urine eases this down to a nonetheless remarkable efficiency of 98.8% (168/170). Think about it for a second: 99% reabsorption efficiency. That’s high efficiency.But what does ‘filtering the blood’ actually mean and how is this done exactly? In each kidney there are about 1 million miniature filters called nephrons. It is in the nephron that the blood is filtered and the urine produced in five stages, first through Bowman’s capsule (1) and into the proximal convoluted tubule (2), then along the loop of Henle (3) and into the distal convoluted tubule (4), and finally out through the collecting duct (5) and into the ureter to the bladder. That's how pee is made and where it comes from. What's in it? Well, mostly water, of course, some extra solutes, but more importantly, it contains urea, uric acid and creatine, those toxic metabolic wastes resulting from protein digestion, that the body needs to excrete.Blood pressureAnd what about blood pressure regulation? Blood pressure is intimately related to blood volume, i.e., the amount of water in it, and blood osmolarity, i.e., the concentration of solutes, mainly sodium as we've seen, and to a lesser extent the other electrolytes, but also glucose. Maintaining these in balance is essential for proper function of everything in the body. For this reason, there are pressure sensors throughout every blood vessel, and osmolarity sensors in the hypothalamus of the brain, as well as highly sensitive sensors of both kinds in the kidney itself.A drop in volume sensed by the pressure sensors in the blood vessels, or a rise in solute concentration sensed in the hypothalamus, will trigger the release of vasopressin from the pituitary gland. Vasopressin will signal the kidney to release more water for reabsorption into the bloodstream to make up for the drop in volume and rise in solute concentration.Vasopressin will make the blood vessels constrict and tighten to maintain the blood pressure constant. It will also stimulate the secretion of glucose from the liver in case fast reaction times become necessary, as well as clotting factors and platelets to make the blood thicker and stickier, and prevent excessive blood losses in case of injury. All of these are part of the standard stress response. Vasopressin will also stimulate the secretion of the stress-induced adrenocorticotropic hormone or ACTH that will act to reinforce all of the above and make things even worse than they already are.What does this mean? It means that even mild dehydration triggers a full stress response in the body with all associated effects and consequences.How much water:The minimum requirement for survival is 1.2 litres in 24 hours. The minimum for proper kidney and metabolic function is 2 litres per day. But the amount required for optimal function and health is 4 litres, together with 2 teaspoons of unrefined sea salt to replenish and maintain sodium levels in order to maximise hydration.Conclusion for water:Here's my long one line conclusion about water: Water is life, and the absence of it is death; not enough water in the digestive system leads to damage of the stomach and intestines, to bad digestion, malabsorption and nutritional deficiencies, to systemic toxicity, and generalised bacterial and fungal infections; not enough water in the bloodstream leads to a full blown, textbook stress response with all the terribly negative consequences this entails, and maybe most importantly, severe damage to the arteries, and thus to the formation of arterial plaques which lead to cardio and cerebrovascular disease, i.e., heart attack and stroke; the optimal is around 4 litres of water over the course of the day, drank on an empty stomach, matched with 2 teaspoons of salt either with the water or the meals.With this general overview of several important systems and functions, let's move on to food: to what happens when we eat something. And to make things as simple and clear as possible, we'll consider each macronutrient separately, and we'll start with the undisputed favourite of them all: sugar.SugarWhat happens when we have a fruit: a tart apple, a juicy orange, or a sweet date? What happens when we eat a biscuit, a piece of bread or a plate of pasta? How is sugar digested? How are starches digested? What happens to it in the body?In the digestive systemDrinking a glass of orange juice on an empty stomach, will deliver 20 g of sugar to the blood in as little as a few minutes. The sugar goes from the mouth and into the stomach, which if empty, allows it to move directly to the small intestine. In a matter of minutes the sugar will have passed through the intestinal wall and made it into the bloodstream.If the stomach is not empty, but instead contains some amount of protein, then the sugar will remain in there, because the contents of the stomach will only be emptied into the small intestine when the protein has been broken down, a process that takes around 3-4 hours. And in the meantime, the sugar will ferment, causing aches and bloating, and impair digestion.In the bloodAs soon as the sugar is in circulation and sensed by the pancreas, insulin will be secreted in an amount that is proportional to the concentration of sugar. Insulin’s primary role is storage of “excess” nutrients, and regulation of fat storage and fat burning: when insulin is high, there is fat storage; when insulin is low, there is fat burning. It’s that simple. And it also means that insulin is the primary regulator of energy balance, and therefore of metabolism.From an evolutionary perspective, the importance of insulin is perfectly clear. Firstly, it is a mechanism that is common to all living creatures, from the simplest to the most complex, because all these living creatures depend for their survival on a mechanism that allows them to store nutrients when they are available for consumption but not needed by their metabolism, in order to live through periods where food is not available. This is why the role of insulin is so fundamental and why it is a master hormone to which most others are subject. But when glucose levels are higher than a minimum functional threshold, what insulin is trying to do, is to clear away the circulating glucose.The body does not want large amounts of glucose in circulation. It wants blood glucose to be low---as low as possible---and beyond this minimum glucose concentration of 60 to 80 mg/dl, it always tries to store it away and clear it from the bloodstream. It tries to store what it can in the muscles and liver as glycogen, and stores the rest (i.e. most of it) as fat.All simple and starchy carbohydrates end up as glucose in the blood, and stimulate the secretion of insulin from the pancreas. Very small amounts of glucose in the bloodstream is essential for life; large amounts of glucose in the bloodstream is toxic.Insulin resistanceChronically elevated glucose levels lead to chronically elevated insulin levels. Like for any kind of messenger mechanism---as is insulin---if there are too many messengers repeating the same message over and over again, very soon they are not heard because their efforts at passing on the message becomes more like background noise.Frustrated that they are not taken seriously, the messengers seek reinforcements in numbers to be able to transmit the message more forcefully. This, however, leads to even more annoyance on the part of the listeners---the message recipients---that now start to simply ignore the message and the messengers altogether.This process continues to gradually escalate up to the point where the terrain is completely flooded by messengers yelling the same thing, but no one listening because they have insulated their windows and doors, and closed them tightly shut.Here, the messengers are the insulin molecules; the message recipients are our cells---muscle, liver and fat cells; and the message is “take this sugar from the bloodstream, and store it away. We cannot have this circulating around for long.” The desensitisation---the not-listening---to different, progressively higher degrees over time, is called insulin resistance. Finally, the complete ignoring by the cells of the message and the messengers is called type II diabetes.Furthermore, insulin resistance, not in the muscle, liver and fats cells, but in the brain cells, leads to neurological degradation identified as cognitive impairment, dementia or Alzheimer’s. Because beyond the fact that type II diabetes and Alzheimer’s disease are both increasing together at an alarming rate in the US and other western countries, and beyond the fact that diabetics are at least twice as likely to develop Alzheimer’s compared to non-diabetics, the basic condition of insulin resistance inevitably leads to chronically elevated glucose concentrations simply because the cells do not allow the glucose to enter.And glucose staying in the bloodstream damages the lining of the arteries, which then leads to plaque formation: the body’s repair mechanism for the damaged cells underneath, just like a scab on the skin. Thus, as are the coronary arteries of advanced atherosclerotic heart disease sufferers (and diabetics) are riddled with plaques, so are the arteries and blood vessels in the brains of dementia and Alzheimer’s sufferers (and diabetics).Here are two quotes from metabolic scientists:Inflammation causes our cells (specifically our mitochondria) to increase production of free radicals. Free radicals are like mini roadside bombs that interfere with normal cellular functions. So … : 1) dietary carbohydrate raises serum insulin; 2) insulin promotes inflammation … ; 3) inflammation increases cellular free radical generation; 4) free radicals attack any convenient nearby target; 5) ideal targets for free radicals are [cell] membrane polyunsaturated fats; 6) membrane polyunsaturated fats are important determinants of cellular function … (p. 82).But also:Carbohydrate ingestion and … hyperglycemia activate a host of inflammatory and free radical-generating pathways. Some of these include: … activation of NF-kB which regulates the transcriptional activity of over 100 pro-inflammatory genes. (The art and science of low carbohydrate living by Volek and Phinney, p.186).And

If you drip insulin into the femoral artery of a dog, … , the artery becomes almost totally occluded with plaque after about three months; the contra lateral side remains totally clear. [So, it's the] contact of insulin in the artery [that] causes it to fill up with plaque. That has been known since the 70s and has been repeated in chickens and in dogs; it is really a well-known fact that insulin floating around in the blood causes a plaque build-up.Another:Insulin also causes the blood to clot … and causes the conversion of macrophages into foam cells, which are the cells that accumulate the fatty deposits. [...] It fills the body with plaque, it constricts the arteries, it stimulates the sympathetic nervous system, it increases platelet adhesiveness and coaguability of the blood. (p. 7)And for the last quote:Insulin regulates lifespan. If there is a single marker for lifespan, as they are finding in centenarian studies, it is insulin, specifically insulin sensitivity. How sensitive are your cells to insulin? When they are not sensitive, the insulin levels go up. Insulin resistance is the basis of all of the chronic diseases of ageing. Cardiovascular disease, osteoporosis, obesity, diabetes, cancer, all the so-called chronic diseases of ageing and auto-immune diseases, those are symptoms, [the cause is insulin]. (Insulin and Its Metabolic Effects by Ron Rosedale, p. 3)

StarchesWhat happens if we eat complex carbohydrates like the starches found in grains and grain products, starchy vegetables like potatoes, or giant grasses like corn. Well, firstly, they take quite a bit longer to digest. Just as for simple sugars, their digestion does not take place in the stomach, but instead in the small intestine, where the enzymes work to break down the long sugar chains into glucose. During this time, glucose is released into the bloodstream as it becomes available, little by little, and therefore stimulates the secretion of insulin in smaller amounts, but over a longer period of time.However, although the breakdown of starches takes place in the alkaline environment of the intestine, the breakdown process itself leads to acidic residues that acidify the intestine as well as the blood. Over time, this leads to exactly the same problems caused by the digestive system made dysfunctional from dehydration, and from the inability of the pancreas to alkalise the small intestine. What do we get? Intestinal inflammation and damage, ulcers, leaky gut, malabsorption, poor elimination, bacterial and fungal overgrowth, and systemic toxicity.Conclusion for sugarSo, my one-line conclusion about sugar: On an empty stomach, sugar goes straight through to the intestine and into the bloodstream within minutes; starches are digested into sugar in several hours by pancreatic enzymes in the alkaline environment of the intestine, but produce acidic residues that impair and damage the intestinal tract and digestive system; insulin is secreted by the pancreas in response to the presence of glucose in the blood; and insulin-sensitivity is the best universal marker for health and longevity, while insulin-resistance is the best universal marker for all the chronic degenerative diseases, as well as premature ageing and death.ProteinHow are proteins digested? How much do we need? What happens if we eat too little or too much?In the digestive systemProtein provide the body amino acids needed for countless functions throughout the organism. However, in order to make these amino acids available, the large and very tightly wound protein molecules need to sit in an highly acidic bath for several hours. This is done in the stomach, and is only necessary for the digestion of protein. As soon as protein enters the stomach, it's presence is detected by sensor cells, and the acidic hydrochloric solution needed for the breakdown is secreted.It's important to keep in mind that if the stomach is unable to secrete the required amount of hydrochloric acid, then the protein will be only partially broken down, and the animo acids will not be available in the bloodstream. This, besides the bad digestion, stomach aches and cramps, gas and bloating, will consequently lead to amino acid deficiency, for which the gravest consequences will be on the central nervous system: brain function and moods.Metabolic wastes in the bloodProtein metabolism, although essential for survival, produces the highly toxic byproducts as metabolic wastes that need to be excreted. As we saw, this is the primary excretory role of the kidneys, and it is very important that these all-important work horses stay in perfect condition to ensure proper elimination of these wastes.Production of these wastes is inevitable, but the amount is proportional to the quantity of protein that is ingested and metabolised. Therefore, it is best to have as much protein as we need, but not more; how much depends mostly on muscle mass and activity, but is between 0.75 and 1.5 g of protein per kg of lean mass per day.RequirementsI'm 58 kg, 8.5% fat which makes 5 kg, and therefore have 52 kg of lean mass, which gives 40-52 g of protein per day. That's not much: a couple of large handful of almonds and a couple of eggs or a small piece of meat or fish (remember that both raw meat and fish are about 70% water by weight).Conclusion for proteinMy one-line conclusion: a well-functioning and abundant supply of hydrochloric acid from the stomach is absolutely essential for complete protein digestion; protein, in order to be properly broken down and digested, must be eaten either by itself, with fat or with green vegetables, but never with either simple or starchy carbohydrates, and always on a well hydrated digestive system; to minimise the amount of toxic wastes produced by protein metabolism, the amount consumed should not be excessive.FatFat, fat, fat. How much do we need? How much can we eat? How is it digested? Where does it go? How is it stored? How is it burned? When is it stored and when is it burned? So many important question about fat.Firstly, I think it is crucial to start by saying that fat is the most important nutrient for humans. To state a few of these essential functions: fat is needed by every cell, especially in the brain, most of it of which is pure fat; it is needed for absorption and fixing of minerals; it is needed for absorption of proper usage of all fat-soluble vitamins, the most essential of which as vitamin A and vitamin D, without which we cannot live; it is needed to support healthy cholesterol synthesis and metabolism, and cholesterol is what all hormones and nerve synapses in the body are made from.These things alone should be enough to convince anyone that fat is indeed the most important nutrient for us. Let's look at a few more details.In the digestive systemFat, eaten alone on an empty stomach, goes straight into the small intestine. As sugar, it does not require to remain in the stomach because it does not need an acidic environment to be broken down and digested; it needs the alkaline environment of the intestine.Unlike sugar or starches, however, fat can remain in the stomach with protein for hours without any problem. Also unlike sugar and starches, most fats need an additional element for digestion: bile, manufactured by the liver, but stored and secreted into the small intestine by the gall bladder, when there's fat. The bile emulsifies the fat into droplets so that it can be transported through the intestinal wall and then circulated into the bloodstream.As cellular fuelProbably every cell in the body can use glucose as a source of fuel. Actually, probably every cell of every living organism can use glucose as a source of fuel. This is an evolutionary trait that comes from the fact that we, and all living creatures, are descendants of the first, extremely simple living organisms that found a way to use glucose as fuel.A molecule of glucose that enters a normal cell will be burned up by the mitochondria with oxygen and produce 36 molecules of ATP (the currency or unit of energy for living organisms). If the glucose is used without oxygen (anaerobically) it will give only 2 ATP. Glucose usage produces a waste by-product, lactic acid or lactate, which can remain in the tissue, or be partially or fully excreted into the bloodstream for elimination by the kidneys, as is normal for acidic wastes.More importantly though, is that almost every cell in the body can also use fat as a source of fuel. And in fact, cells of living organisms like ourselves much prefer fat over glucose for the very simple reason that the oxidation of a fatty acid by a cell's mitochondria produces a lot more molecules of ATP (the amount depends on the kind of fatty acid, and more specifically on the number of carbon atoms), and in addition, does not produce acidic waste by-product---no lactic acid or any other kind of acid---and thus no acid that requires excretion and elimination, and no acid that accumulates in the tissues.For those relatively few cells that cannot use fat directly, the body manufactures ketone bodies, which are just simple, fat-derived molecules intended as fuel, mostly for the brain. But ketones have a whole array of wonderful, health-promoting properties, especially for the brain, like stimulating the healing and clearing out of plaques in the cerebral arteries and arterioles. This fact is the basis for many therapeutic treatments of people suffering from central nervous system disorders like epileptics, young or old, and Alzheimer's patients.Fat storageVery importantly, fatty acids in circulation will not be stored into fat cells unless insulin is elevated: the fat will remain in circulation for hours, no matter how much of it there is, slowly being used up by working cells as fuel, and continue to signal satiety and suppress hunger until it is used up and gone.If insulin is elevated, however, the insulin will store everything away, the glucose, the protein, and the fat, also no matter how much of it there is, and most of it in fat cells. Remember, insulin's role here is to store away excess nutrients for use during future times of scarcity. It doesn't care that we already have dozens kilos of stored fat for future times of scarcity. It just clears the bloodstream of nutrients and promotes fat storage.Conclusion for fatThat's it, that's the last topic I'm going to talk about for now, and here's my final one-line conclusion for fats: Fats are needed for building and repairing cells, for mineral absorption, for cholesterol synthesis, for hormonal balance and brain function; fats are digested in the alkaline intestine, where they are emulsified by the bile made in the liver and secreted by the gall bladder; unlike sugar, it can remain in the stomach together with protein for hours without causing problems; fat is the ideal cellular fuel, because the oxidation of a fatty acid in the cell produces 24 units of ATP, twelve times more than glucose, and does not produce any acidic by-products such as lactic acid in the case of glucose. Fat-derived ketones are not only fuel for a few specialised cells like some of those in the brain, but have many health-promoting and healing therapeutic effects.Thanks for listening. I'm open for questions.This talk was given to a group of colleagues at the European Space Astronomy Centre of the European Space Agency, in Villanueva de la Canada near Madrid in Spain, on August 6, 2013.

Read More

Understanding digestion

There are four things about digestion that I believe to be essential to understand, remember, and always keep in mind. The first is that although the environment of the stomach can be, and is generally at least mildly acidic, the intestines must be alkaline. The second is that the level of acidity inside the stomach depends on what is in it: it is in response to whatever comes into the stomach that specialised cells of its lining secrete hydrochloric acid in greater or lesser amounts. The third is that only protein requires a highly acidic environment to be properly broken down into the amino acids that make up protein before moving on into the small intestine; fats and carbohydrates neither require nor stimulate the secretion of acid in the stomach because they are broken down in the alkaline environment of the intestine. And the fourth is that water is totally crucial to the proper function of all digestive organs, and to the whole process of digestion from start to finish.[caption id="attachment_12840" align="alignnone" width="1722"]

digestive_system_with_labels

Model of the human digestive system with labels[/caption]Because proteins are so hard to break down, they must remain in a highly acidic environment in the stomach for about 3 hours before the resulting chyme should be, can be, and is normally transferred to the small intestine. (Obviously, the time depends on the amount.) And the more acidic the environment of the stomach, the better it is for the breakdown of protein, but also to protect the organism by destroying pathogenic bacteria that could have come with the protein, as is presumably often the case in the wild.In addition to the hydrochloric acid secreted by the stomach, protein-digesting enzymes (proteases) like pepsin are also secreted by the stomach when it contains protein. Moreover, the acid activates the inactive forms of the enzymes prorennin and pepsinogen into their active forms: rennin is necessary for digesting milk protein, and pepsin breaks down the proteins into polypeptides. It is very important to remember that the stomach has cells that sense what nutrients are present, so that it knows what and how much to secrete for their digestion.Many people suffer simultaneously from amino acid deficiency, and the consequences of putrefaction of undigested protein in the intestine, even though they eat plenty, if not too much protein, because their stomach does not produce the amount of hydrochloric acid that is needed for proper protein breakdown. In fact, this is very common in older people, but it is also a problem in the middle aged and even in young adults. This problem can be partially remedied by taking hydrochloric acid supplements with protein meals, an approach that works very well for the elderly, but addressing the fundamental issues that lead to digestive dysfunction is obviously most important. The digestion of fats and carbohydrates is entirely different.Simple carbohydrates eaten on an empty stomach will move out of it and into the intestine in a matter of minutes. This is why blood sugar levels go up almost instantly when we eat or drink simple carbs like whole fruit or fruit juice. Starchy carbohydrates begin to be broken down into sugar when they come into contact with those enzymes in the mouth whose purpose it is to do this (primarily amylase), and will be broken down completely over the course of a few hours, not in the stomach, but in the small intestine.The same goes for fat: fat or oil by itself eaten on an empty stomach will swiftly move to the small intestine as it does not need an acidic environment, and thus simply does not need to stay in the stomach. But unlike carbohydrates, fats need to first be emulsified into droplets that can mix in the watery environment of the small intestine. This is done by the bile produced by the liver, but stored and secreted by the gall bladder into the small intestine. The emulsified triglycerides are then broken apart by pancreatic lipase that separates the glycerol backbone from the three fatty acids. The free fatty acids are absorbed in the small intestine and into the bloodstream by passive diffusion (as is water).Another important difference between the digestion of carbohydrates and fats is that while it is no problem at all for fat to sit in the stomach for hours, together with the protein being broken down by the acidic chyme, carbohydrates, and especially simple carbs, start to ferment very quickly if they do not move out of the stomach. This is what gives rise to the characteristic bloating that we feel when we eat simple carbs together with other foods, but especially when combined with any kind of protein, the best example of which is having sweet things either with or after a large meal that typically contains plenty of protein, such as the terrible habit of having fruit after the meal, as is done in most western countries, as opposed to the much wiser habit of eating the fruit as a starter, before the meal, as is done in some other cultures. Bloating, burps, gas, stomach aches, etc, as well as really bad digestion followed by really poor absorption all result from the fermentation of the simple carbs that remain in the stomach for longer than a few minutes, as they normally would, before passing to the small intestine, as well as the incompatibility of various digestive enzymes, each with its own specific nutrient to break down, released into the intestine by the pancreas, all trying to do their work, but clashing against one other in the process.Therefore, to properly digest protein there should be no simple or starchy carbohydrates in the stomach for the entire breakdown process that lasts about 3-4 hours for a normal (smallish) meal. In addition, there should not be any alkalising liquids like alkaline water, sodium bicarbonate water, lemon water, or green juice in the stomach, because they will work to neutralise the acid needed to break down the protein, and thus cause bad digestion and stomach aches. You can try any of the combinations described here if you want evidence through personal experience, but I'm sure you have experienced most of them at various times, although most probably unaware of it. I guarantee that it works in exactly the same way for everyone, even if some are definitely more sensitive than others.In case you don't know or don't remember from other articles, I think no one should consume simple or starchy insulin-stimulating carbohydrates because their consumption in any amount inevitably damages body and health in any one of several very predictable ways. The reason why I am emphasising these points about carbohydrate digestion is not only because the majority of people in the world get most of their calories from insulin-stimulating carbohydrates, but also because these carbohydrates are most disruptive to digestive health in many more ways than we tend to know or consider.I have written recently in the article Detoxification about the disastrous consequences on the digestive system of a diet consisting mostly of simple or starchy carbohydrates, all of which are caused by chronic acidosis of the intestine. To recover from or avoid these digestive disorders and the diseases that result from them, it is of paramount importance to, on the one hand, eliminate these acid-forming sugars and starches, and on the other, alkalise as much as we can the intestinal tracts on a continual basis, day after day, and year after year.The natural consequence of these facts and considerations is that the most healing and health-promoting of diets is one that consists primarily of alkalising drinks and foods---alkaline water, green juices, lemon water, and green and leafy vegetables---and in which energy needs are covered by the best fats---coconut oil, raw grass-fed butter, wild fish and meats, and whole, soaked nuts and seeds---with protein consumption kept to the essential minimum based on individual needs.Water is exceedingly important for digestion, and I have written about this in Why we should drink water before meals. The two most crucial roles of water in the digestive process are: First, to provide the stomach the level of hydration needed to make, maintain and adjust the thickness and consistency of both the layer of mucus that protects the lining of the stomach from the corrosive acidic secretion required for the breakdown of protein, and for of the chyme itself during the initial phases of digestion when it is churned by the stomach. Second, to provide the pancreas the required hydration for it to be able to produce the all-important pancreatic fluid (bicarbonate solution) whose purpose is to neutralise the acidic chyme once it is transferred from the stomach to the small intestine, as well as to carry the enzymes produced by the pancreas to break down those foods that do not themselves carry and provide the enzymes needed for their proper digestion.As is always the case for everything that relates to health, we can only truly understand by understanding the physiology---how things work. The digestive system is the one around which all other systems are arranged because the health and survival of the organism as a whole depends entirely on it. And the key to optimal digestion and health is the understanding that the stomach only needs to be acidic when there is protein in it, the intestine must always be alkaline, and the digestive system as a whole always requires a good supply of water.Therefore, we should aim primarily to alkalise and hydrate by drinking lots of alkaline mineral and chlorophyll rich drinks together with liberal but appropriate amounts of unrefined sea salt (see How much salt, how much water, and our amazing kidneys); consume plenty of fat; always consume protein either by itself, with fat or with green vegetables, but never with simple or starchy carbohydrates; if you eat simple carbs such as sweet fruit, make sure you eat it by itself on an empty stomach; and always make sure that when you eat protein, the environment of the stomach is kept acidic, and thus do not have any alkalising liquids for at least 60 minutes before and 3 hours after the protein meal, but also make sure to have at least half a litre of plain water, at least half an hour before eating.Keeping to these simple principles will ensure optimal digestion, optimal digestive health, and optimal overall health, day and day, and year after year, throughout life, from childhood to old age.

Read More

Everything is in the biochemistry

The trillions of cells that make up the body don't give a shit if you are happy and joyful, or dissatisfied and angry. They only know biochemistry, nothing else. The fact is that in regard to health, biochemistry is everything, and everything is in the biochemistry. This means that absolutely everything in the body is defined and determined by the biochemistry, and that everything we eat, drink and do, but also everything we think, feel and believe, defines and determines the biochemistry of the body.There is no doubt that any negative stressor, including and maybe especially the various states of dissatisfaction and unhappiness most of us cycle through each day, are truly poisonous to our health. But no matter how complex the details of this may seem, no matter how much or how little of it we understand or realise, the imbalances caused by every negative stressor will be seen clearly in the biochemical tracers that can be tested for and measured. And it is those tracers together with every other bioactive molecule that define and determine all cellular functions and interactions on which depends health or disease. For example, morning cortisol levels above 10 micrograms/dl most probably means too much stress on a daily basis, independently of its causes, and cortisol levels below 5 most likely means adrenal fatigue from chronic stress over an extended period of time, also independently of what has caused this. These observations have nothing to do with how you feel about it, and the stress hormones secreted by the adrenal glands do not know what you think or feel or believe about anything at all; they just respond to the biochemical conditions in the body.If you are chronically stressed, unhappy and generally feeling shitty, it is certain that your biochemistry is not in balance, that as a result of this your health suffers, and that you absolutely need to do something to change and improve your situation. If, on the other hand, you are feeling happy and enthusiastic, and everything seems perfectly fine, this does not imply that your biochemistry is in balance, and it certainly does not imply that it is optimal. This is obvious considering that more or less everyone in western countries dies between 65 and 85 of heart attack, stroke, cancer, diabetes and Alzheimer's. I'm sure you'll agree that it would be silly to say that all of these people---in this case about 90% of the population---die because they are unhappy and stressed, or that if they were as happy as can be, they would not get sick.Feeling happy and joyful does not in the least make us immune to disease. My dad was a remarkably happy and joyful fellow for most of his life, but he was fat from the age of about 25, was taking various medications from the age of about 50, and increasing in number with time, just as his parents, and just as most people today, and he died rather unexpectedly (isn't this almost always the case?), at home, from heart failure due to extreme dehydration as a consequence of four days of intensive chemo intended to treat a rapidly growing cancerous sarcoma in the arm. This happened even though he walked into the hospital with a spring in his step, and the belief of a good natured, joyful man that he would make it through this thanks to his positive attitude, and his lack of fear about this whole cancer thing. Obviously he was proved direly wrong, and so were the stupid, incompetent doctors that recommended that treatment to this obviously fragile 70 year-old man with highly compromised health.The chemo administered intravenously, burned through him from the inside: he had continuous diarrhoea with no control of his bowels, but every time he drank even a sip of water, he said it felt like fire burning through his throat. So, he couldn't drink. Amazingly, the nurses that came to measure his blood pressure, which must have been low and dropping by the hour, must not have noticed or found this problematic, because they didn't bring him back to the hospital and put him on an IV in order to provide the water and salt needed to keep the heart and kidneys working. Living 5600 km away and 6 hours ahead, I was made aware of all of this in retrospect with several days delay, and was unable to do anything about it in time. Everything happened really quickly: four days of chemo, and he was dead seven days later.It is one thing to know and say that negative stress, whatever form it takes, poisons our health, and indeed makes us weak, tired, and prone to developing a wide range of disease conditions. But it is another entirely different thing to say that if you are happy and joyful you don't really need to worry about what you eat as long as you eat a "healthy" and "balanced" diet, and enjoy what you eat. That's plain wrong, objectively false. And what does "a healthy" or "balanced" diet mean anyway? A little bit of everything? Certainly not! And isn't this what we are aiming to define as precisely as possible through reading, studying, personal experience and investigation, and efforts towards the noble goal of achieving perfect health?Why brush your teeth with Tooth Soap instead of with Colgate, Crest, Tom's or nothing at all? Is it because it makes you happier, or it is because you know it's better for the teeth? It's the latter, of course. And independently of your state of happiness and joyfulness, Tooth Soap is better for your teeth and your health than Colgate, (and a high quality natural bar soap is even better and much cheaper). In exactly the same way, a green juice made entirely of green vegetables is a million times better for you than a fruit smoothie with bananas, apples and berries, or peaches, apricots and carrots, or whatever you like. And this is independent of your state of happiness or unhappiness, even when considering that drinking the fruit smoothie may make you feel "better" and happier than drinking the possibly (but not necessarily) bitter and astringent green juice.Why? Not just because the fresh green juice is so objectively excellent for your health in so many ways, but primarily because each droplet of insulin in your blood beyond the strict minimum needed by the body at any given time damages the cells and tissues throughout, from the toe nails, the hair, and the skin, to the eyes, the optic nerve, and the brain cells, in the entire circulatory system, and to and from every cell, tissue and organ in every part of the body. Therefore, because insulin is raised above the strict functional minimum more and more by every single additional gram of insulin-stimulating carb you eat or drink, this means that every one of these grams of carbs harms the body in some way. The green juice can be said to be objectively good in the absolute sense of the word, while the fruit smoothie can be said to be objectively bad, also in the absolute sense of the word. Yes, I'm sorry to have to repeat this, but sweet fruit other than berries is bad for your health. And fruitarians, like Steve Jobs for most of his adult life, well: pancreatic dysfunction, failure or cancer (as was the case for Jobs), and otherwise cancers of all other kinds will almost inevitably come to anyone who eats only fruit for an extended period of time. This is entirely independent of what you think about it, what you feel about it, and how happy or unhappy you are when you eat or in general. It's objectively thus, based solely on the biochemical effects of these foods on the body and its metabolism.Going further still with the biochemical connections, everything we eat can either relieve inflammation or cause it, relieve acidosis or cause it, and therefore, either relieve bodily stress or cause it. All insulin-stimulating carbs directly and indirectly cause inflammation, cellular damage, acidosis, and thus physiological stress. This physiological stress not only compounds with the psychological stressors, but actually causes additional psychological stress, even if it is not perceived as such, simply because stress hormone levels are higher. As a consequence, we are more sensitive, more delicate, more prone to anxiety and nervousness, more easily startled and generally edgy, all of which just means we are stressed, more stressed.There's just no way around this: the bodymind is a seamlessly bound whole in which everything affects everything else, in all ways and at all levels. And once more, from the cellular perspective, the cells really don't care in any way about how you feel, what you think, what you believe and how joyful or happy you are. How could they? They only strive to survive as best they can in the environment of the body, and they experience the consequences of everything we eat, drink, do, think and feel compounded and mixed together, only through how all of this is expressed in the complex biochemical makeup of that inner environment.An excellent illustration of the importance of optimal biochemical balance is B12 deficiency induced disease conditions such as depression, psychosis, bipolar mania, schizophrenia and paranoia. You can take someone suffering from any one of these conditions that would be almost certainly, and thus inevitably wrongly, diagnosed as psychiatric in nature, give them all the drugs you wish, all the attention, love and caring, all the therapy and counselling in the world, and nothing will make them better. Only correcting the B12 deficiency will make them better. And often almost immediately so, within days, through daily injections of 1-2 mg doses of methyl-cobalamin.I do not put into question the intentions and sincerity of health writers and bloggers. What I put into question is the advice given that has the potential to reach countless thousands, and cause harm to those who, looking up to these health role models, choose to follow their recommendations. Since we are concerned with optimal health, we need to be accurate and scrutinising. We need to be clear and sharp, pragmatic and scientific, and come to solid conclusions based on facts, in this case, physiological, biochemical and metabolic facts. And this cannot be done without, on the one hand, a thorough understanding of physiological, biochemical and metabolic functions, and on the other, measurements of the blood markers that are the most direct means we have to look inside, so to speak, in order to objectively assess the state of health or disease of the body.(This was written in response to a comment by Gabriala Brown (Tooth Soap) about a comment I made in reaction to a post by Frederic Patenaude on Kevin Gianni's Renegade Health blog. If you enjoyed reading this article, please click "Like" and share it on your social networks. This is the only way I can know you appreciated it.)

Read More

Detoxification

Do you know why cattle raised industrially, either for meat or for dairy, need to be on various drugs and antibiotics? Because they're sick. Do you know why they're all sick with viruses, bacteria, infections, tendonitis, chronic inflammation, arthritis, atherosclerosis, diabetes and cancer? (sounds familiar?) Because their intestines are chronically acidic. Do you know why their intestines are chronically acidic? Because they are fed a high-carbohydrate diet based on corn.Do most people know this? No, they don't. But is this a well-known problem in the industry? Of course. Is the cause of this problem also well-know? Of course it is. Industrial veterinarians say so themselves: "If these animals grazed on grass, we would be out of our jobs!" (from The Omnivore's Dilemma).And why is that: why is it that if cattle were to eat grass---as they always have, not just for the last ten thousand years since our ancestors domesticated them, but for millions of years along the slow evolutionary path---they would not get sick? Because they are meant to eat grass: they are herbivores. Yes. But that doesn't explain why. The reason that they would not get sick is because their intestinal tract and their blood would be alkaline. Now, the most important question is the following: why is a chronically acidic intestinal tract the root cause of so much sickness and disease in cattle? The answer is simple, relatively speaking: Cattle are herbivores. This means they have evolved eating grass. Dark green, chlorophyll-rich, fibrous grass loaded with minerals is not only excellently nutritious for them (and for us), but it yields in the intestines an alkaline residue after digestion, sometimes referred to as ash in analogy to something that has been consumed by fire.The pH of the entire length of the intestines is meant to be and remain alkaline. (Recall: 7 is neutral, below that is acidic, and above is alkaline.) Unlike the stomach in which the environment must be acidic (from mildly to highly depending on its contents) in order to break down proteins into simple amino acids, and that for this reason has cells that secrete mucus to form a thick layer that protects the lining from the corrosive acid also secreted by cells in the stomach in response to the presence of proteins, the delicate lining of the intestines does not have such a protective coating of mucus. The mechanism intended to protect it is the secretion by the pancreas of a strongly alkaline sodium bicarbonate solution into the small intestine in order to neutralise the acid following the transfer of the contents of the stomach into the duodenum.However, even though this process does take place more or less efficiently depending on many factors like pancreatic and kidney function but especially on hydration status (see Why you should drink water before meals), the final stages of digestion and breakdown of the foodstuff---the now pH-neutralised chyme that came from the stomach---leave either an alkaline or an acidic ash depending on what it is, and on how well this entire digestive process takes place.Now, if you didn't already know this, the digestion and breakdown process is not done by "us" or by the intestines themselves: it is done by the trillions of bacteria, yeasts and fungi that live in our gut. These microscopic inhabitants that make up our intestinal flora depend on us for their survival, but we also depend on them for ours. This is the definition of a symbiotic relationship.As you may have guessed, some are beneficial and essential, while others are detrimental and pathogenic. What is it that regulates the proliferation and lifecycle of all these microscopic inhabitants of our intestines, different kinds throughout, depending on the section and specificity of the cells and nutrients that are absorbed in that particular stretch of the long tube that is our gut? It is the environment, the surroundings, the medium in which they live. And what determines the characteristics of that medium? The foods we eat, and when we eat them; the drinks we drink, and when we drink them. Makes perfect sense, doesn't it?When the intestines are chronically acidic, the pathogenic yeasts, fungi and bacteria thrive and proliferate: their metabolic by-products, their eliminations---that are highly acidic---make the environment increasingly more acidic, the lining of the intestinal wall is gradually corroded, and eaten away by the acid. Once it is thin enough the yeasts' and the fungi's tentacles and outgrowths pierce through the intestinal wall and spill out their toxins and themselves into the bloodstream and outside the gut, spreading throughout the body, multiplying and proliferating in every other place where the environment is suitable, and given that in the crushing majority of people, most tissues are already quite acidic, that's not hard to find.The result? inflammation, yeast infections, urinary tract infections, vaginal infections, fungal overgrowth, generalised candida all over the place, inside and out. This is what causes the cattle to be sick. This is what causes all of the diseases from which they suffer, from which they need to be treated with drugs and antibiotics, and from which they need to be treated by the vets. Why? Simply because they eat corn instead of grass. Once more: is this known by most people who gingerly go to the supermarket to get a their meat for dinner? Sadly, no, it isn't. But is this known by the vets in the meat industry? Sadly, yes, it is.What does any of this have to do with us? It has everything to do with us because exactly the same thing happens in our own gut (see Sick and Tired). You've certainly heard of the so-called leaky gut syndrome. Well, this is it: exactly it. But what you probably haven't heard is that this is what is happening in your intestines, and in those of almost everyone you know, and, in fact, almost everyone everywhere, to a greater or lesser extent.Why? Because we all eat lots of simple and starchy carbohydrates, because all simple and starchy carbohydrates make the intestines acidic, and because all the pathogenic inhabitants of our gut thrive on the sugar and starch it is fed, and in the increasingly acidic environment this promotes.What does any of this have to do with detoxification? It has everything to do with detoxification because the metabolic by-products and eliminations of the pathogenic yeasts, fungi and bacteria thriving in our gut are by far the most important source of toxins from which the body is sickened, but also of which it is desperately trying to detoxify itself.Furthermore, all toxins resulting from the natural and normal digestion and metabolism of proteins are also highly acidic. And what is generally the case for most of us---here again, almost everyone everywhere---is that every tissue in the body is overly acidic, every cell that needs an alkaline environment to function properly is desperately trying to survive in this acidic medium. And so, exactly like the cattle, we are all sick, we suffer from viruses, bacteria, infections, tendonitis, chronic inflammation, atherosclerosis, arthritis, diabetes and cancer, and everything else you care to add to this list.What happens when we stop eating simple and starchy carbohydrates? It's simple: the pathogenic micro-organisms in the intestines are starved because they cannot survive without a constant supply of sugar, and consequently begin to die off, massively. The beneficial ones do not. In addition, there is a quick metabolic adaptation and shift to using fat instead of sugar as the primary source of cellular fuel: nutritional ketosis is triggered within about 48 hours, takes about 4 weeks to be well established, and about 8 weeks to be completely established (from The Rosedale Diet and The Art and Science of Low Carbohydrate Living).This keto-adaptation causes a fast and sudden activation of fat-burning stimulated by the drop in blood sugar and insulin levels, thus releasing into the bloodstream the heavy metals and chemical contaminants stored in the fat cells. This causes the spilling out of toxins all at once and from all directions that can manifest in a variety of ways: headaches, stomach aches, diarrhea, vomiting, boils, rashes, anxiety, insomnia, as well as asthma-like or other allergy-like reactions, to mention the most common.But all of these are signs of detoxification and are therefore good, very good, extremely good. The only thing is that depending on the initial state of the body, the process may be more or less extreme, more or less painful, more or less prolonged, and more or less stressful. In some cases, we may want to do it more gradually in order to avoid an extremely fast, and thus intense detox phase that can sometimes actually make us sick(er) for a while. But no matter what, everything that manifests is a positive and encouraging sign that we are moving towards a healthier state of body and of mind, for sure. There are several things that help in the process of detoxification.The first, that you will have read or heard about anywhere you encounter mention of detoxification, is to drink a lot of water. What you will not have read or heard about, however, and that I will add to this recommendation, is that it is essential to take plenty of unrefined sea salt to accompany all the water. Without the salt, you will quickly dilute your blood sodium and chloride concentrations and consequently dehydrate instead of hydrating. The ratio is 1/2 to 1 teaspoon of salt per litre of water, depending on how much you eat, and how much salt you take with that food. The more you drink, the more salt you need, and it is particularly important if you don't eat for an extended period of time. Drops to make the water alkaline is also very helpful; just make sure you don't do this just before, during or after having complex proteins, as they require a highly acidic stomach.The second is that since you can consider all the toxins being released as acidic waste, it is extremely helpful to alkalise as much as you can to neutralise as much of the acidity as possible. So, drink green juices and chlorophyll, either fresh or in powdered form, and eat cucumbers, celery, kohlrabi and huge dark green salads with avocados, and fresh parsley and basil as often as you can. All of this is also true every day and always.Third and also crucial are psyllium husks, to help clear out the toxins from the intestines as efficiently as possible. A good way to take them is to dissolve in a 1 litre bottle of water, 1 heaping teaspoon of green juice powder, 1/2 teaspoon of unrefined Atlantic salt, and two teaspoons of psyllium husks (aloe vera juice to enhance cleansing and a tiny bit of stevia to sweeten and counter the salty taste are optional). Also good is with lemon water (1 litre, 2 lemons, stevia, salt and psyllium). Make sure you let it sit for some time so that the psyllium husks are well hydrated before you start drinking, and shake well every time before drinking.You should have at least one litre per day (I do this every day, drink relatively slowly typically between 10:30 and 12:30, always on an empty stomach), and two litres during the acute detox phase would be excellent (mid-morning and afternoon). This will clean out the entire length of the intestines very effectively but also very gently.Remember to always start the day with a 3/4-1 litre of plain, room temperature, alkaline water, drank over the course of at least 30 minutes. Or, alternatively or in combination, you can also start with a litre of tulsi herbal tea. Tulsi or Holy Basil is a powerful anti-stress and adrenal support that is soothing and relaxing without inducing sleepiness, and that over time helps the adrenal system recover from the very commonly encountered state of partial or nearly complete adrenal exhaustion. I usually to do both the water (between 1/2 and 1 litre) and tulsi tea (also from 1/2 to 1 litre) for a total that is always between 1 and 1.5 litres, typically taken over the period from 7 to 9, first thing in the morning.Finally, it is very useful to soak in a hot bath with 2 to 4 cups of baking soda or epson salts (magnesium sulphate), or even better, 1 cup of nigari flakes (magnesium chloride). This will help relax the muscles, alkalise by pulling out acids from the tissues, and promote maximum detoxification through the skin. Magnesium chloride is also a powerful detoxifying and metal-chelating agent on its own. Make sure to supplement with it both orally and through the skin (see Why you should start taking magnesium today). Putting food-grade, virgin coconut oil, scented with a little essential oil of lavender or geranium on the skin is excellent. (Melt the coconut oil at low temperature, add the essential oils in the ratio of 10 ml per litre, seal, shake well and put in the fridge to cool quickly. Then take it out and keep it a room temperature.)The acute phase can be hard to get through, but it is relatively short (a few to several days), and you will really start to feel a lot better after all these toxins have been cleared out of the body: all the pathogenic micro-organisms starved off and eliminated together with their acidic metabolic byproducts.The process of healing the intestines, the blood and the tissues takes a long time, but on the way there, you will feel better with every passing day. Regular green juice fasts are an excellent way to accelerate the process of healing and then to maintain health.It is essential to remember, however, that beyond the initial acute detox phase, optimal health depends entirely on a continual process and perpetual cycle of cleansing, detoxification and alkalisation followed by nourishing, repairing and rebuilding, carried out every day, and day after day. The profound systemic detoxification and healing process that results from the complete elimination of sugars and starches from the diet is without any doubt the most important and powerfully healthful change you could ever make.If you enjoyed reading this article, please click "Like" and share it on your social networks. This is the only way I can know you appreciated it.

Read More

The kidney: evolutionary marvel

Kidney stones appear at all ages. They are common in older people, but also in the middle aged. They are seen in infants and toddlers, but also in teens and young adults. About 80% of them are calcium stones, 10% struvite stones (from urinary tract infections), and 10% crystallised uric acid, but uric acid 'seeds' also promote the formation of calcium stones. That this is so naturally implies that chronic kidney dysfunction must also be common.Pain associated with a kidney stone can be sharp or dull, mostly depending on the size of the stone either partially blocking or passing through a calix in the kidney or the ureter from the kidney to the bladder, and usually expresses itself as pain in the back or side (easily mistaken for muscular strain), in the abdominal area (easily mistaken for indigestion) or in the groin above which sits the bladder. That such a pain should appear and persist when there are no reasons to suspect either muscle soreness or indigestion indicates that the problem may well be with one or both of the kidneys.We take almost everything for granted. That we should have air that is not toxic to breathe, water that is not polluted to drink, food that is not contaminated to eat. That we should have a comfortable and warm place to live and work, hot water to shower and bathe whenever we wish, running water wherever we find ourselves. That there should be living plants, insects and animals; soils in which can be planted seeds that will grow; rivers, lakes, seas and oceans in which fish can live, thrive and multiply; mountains, forests and plains in which trees, bushes and grass, beasts, birds and bugs, and every living thing can also not just survive, but thrive. We take these for granted, maybe all the time, and if not, probably most of the time. It is, unfortunately, more than obvious that we should not.That we take almost everything for granted is even more remarkable when we consider this bodymind (that we customarily and mistakenly call ours), with its countless numbers of specialised cells and tissues, its amazingly intricate organs and systems, and its multitude of facets and functions. What happens when we breathe in, and then when we breathe out? What happens when we drink a glass of water or when instead we drink a glass of juice? What happens when we drink a glass of Coke or a glass of wine? What happens when we eat something: when we eat an apple or a cucumber, a carrot or a celery stick, a potato or an avocado; when we eat an almond or a walnut, pumpkin or sunflower seeds; when we eat meat or fish, eggs or cheese, olive oil, fresh butter or coconut oil; and what happens when we eat burgers and fries, doughnuts, cookies, cake and candy? What happens in the stomach, in the pancreas, in the liver, in the gall bladder, in the small intestine and in the colon? What happens during the process of digestion? How does digestion take place? What happens in the kidneys? What happens in the bloodstream? What happens in the brain?Most of us have no idea. But we should, should we not? We take it all for granted: that everything will just work; everything will take care of itself; the body will take care of us. Although this can happen, sometimes, in general it doesn't. But it should, shouldn't it? Why does it escape us so thoroughly that this bodymind---every single cell in it---is entirely made from what we eat, drink and breathe? It is so obvious and yet it eludes us. And so, we must consciously come back to this again and again.When we begin to explore the physiology of the body to find out how things work, we find that both the complexity with which we can appreciate, and the understanding of the various functions and interactions, arrange themselves in layers from coarse and superficial to more subtle and profound. Inevitably, as appreciation and understanding deepen, it becomes impossible to find all of it anything less than amazing. And although this can be said for many, maybe even for all organs, it is particularly true in this case: the kidney is an evolutionary marvel, a true jewel of physiological evolution in animals.The kidney is without any doubt one of, if not the most refined organ both in architecture and function. To pack together so many tiny, delicate structures, working both independently and in unison in an array of such intricate, complex and subtle functions and interactions is truly mind boggling and awe inspiring. This fact is totally underappreciated. And for this very reason, I feel it is important to bring this to your attention before moving on, so that it can remain clear throughout your reading of this article. I hope that with an understanding of what the kidneys do, how they function and what they need, this appreciation will become permanent for you, coming up on its own every time you drink a glass of water, and also every time you remember that you should have.What we need to knowThe kidneys are two bean shaped organs typically 11 cm in height, 6 cm across and 3 cm thick, on top of which sit the suprarenal (as in: above-the-kidney) or adrenal glands. They are located deep in the abdomen close to the spine, one on either side, in the area of the lower back, just below the rib cage, protected in part by the last couple of ribs but mostly by the tick muscles of the back. The kidney has four main components: a thin layer that covers it like a thick skin called the capsule; a thicker layer just beneath the capsule called the cortex (outer layer), in which are most of the arteries and veins; the inner layer called the medulla (middle layer) constituted by conical structures called the pyramids (there are usually 7 of them in humans) with their wide part or base in the cortex and their tips pointing inwards towards the innermost part of the kidney; and finally the pelvis (base) with its calyces connecting to the ureter.

kidneyDetails

As for everything that relates to health, understanding how to promote optimal function of a cell, tissue, organ or system requires understanding how it works. It is important to remember that every living cell and organelle does what it does not for our sake, but to maximise its ownprospects for survival. When we understand what an organ is trying to do, then we can understand what is needed to make sure that it can do it with ease and efficiency. And when the organ functions with ease and efficiency, it functions optimally. This is the approach to use to maximise our prospects for living a long, healthy and happy life.So, what is the kidney trying to do?One: Take out of the blood metabolic wastes and toxins, primarily urea, uric acid and creatinine, all resulting from protein metabolism, while keeping as much as possible of the useful stuff, especially water, minerals and amino acids. Two: Maintain blood electrolyte balance (sodium, chloride and potassium; calcium, magnesium and phosphate), pH (bicarbonate and hydrogen) and osmolarity (concentration of solutes in general). Three: Regulate body fluid content and blood volume and pressure. Sodium is the most important electrolyte and blood pressure regulator, and therefore most closely monitored by the kidney.What are the main metabolic waste products?Urea results primarily from the breakdown (oxidation) of amino acids that are not used to build tissue, i.e., protein intake in excess of what can be used at any given time to build and repair cells, (but also from our own tissues). Urea also result from the conversion of ammonia, another byproduct of protein digestion which is so acidic that in high concentration it can cause cell death. The kidney, therefore, tries to eliminate as much as possible of the urea, recycling only what it must depending on the body's needs, especially to increase water re-absorption when there is dehydration.Uric acid comes from the breakdown of purines. Some are present in our own cells, and so the natural recycling of the components of dead ones produces uric acid on a more or less continual basis and at a more or less elevated rate depending on how quickly cells are dying (the rate of ageing). Purines are also present in foods we eat and drink: mostly protein-rich foods and alcohol containing drinks like wine and beer. The more purines are present, the more uric acid is produced. All the uric acid needs to be eliminated. When the urine is too concentrated and acidic, however, uric acid cannot be dissolved and thus crystallises.Creatinine is a breakdown by-product of creatine phosphate, an energy storage molecule used mostly in cells with fluctuating energy needs like those in the muscles and brain. Creatine is made from three amino acids in two steps: the kidney combines the arginine and glycine, and then the liver binds on methionine. Creatine is then transported in the bloodstream to muscles where it is made into creatine phosphate and back to creatine as needed. In the first few seconds of an intense muscular effort or brain activity, creatine phosphate can lend a phosphate group to ADP (adenosine di-phosphate) to form ATP (adenosine tri-phosphate, the energy currency of cells), and help supply the needed energy. Very conveniently, if later there is extra ATP floating around not being used, creatine will take back a phosphate group from the ATP molecule, leaving the latter as ADP, and storing the former for future needs as creatine phosphate once more. Creatine is eventually broken down to creatinine and must be completely eliminated by the kidneys. The need for and use of creatine phosphate depends primarily on muscle mass and level of activity. Therefore, so does production of creatinine.How does the kidney do what it does?By filtering the blood. And the kidneys filter a lot of blood. About 25% of all the blood coming out of the heart flows through them. This is on average 1.2 litres per minute, which amounts to more than 1700 litres per day! Since there are 4-5 litres of blood in the body, it means that every drop goes through the kidneys about 400 times each day! Since the overall flow and pressure of the system must be maintained, only around 20% of the blood flowing through the kidney is filtered (that's 240 ml/min and 340 l/day). The renal artery supplies the blood, and branches out into smaller arteries that also branch out into smaller arterioles all the way to the filtering unit. Because half of the blood volume is water, this amounts to 850 (1700/2) litres per day flowing through the kidneys. Filtering 20% means that 170 litres of water are filtered each day. Therefore, if one litre of urine is produced and excreted over the course of 24 hours (that's pretty typical, unfortunately), it means that 169 out of 170 of these litres of water are reabsorbed: a reabsorption efficiency of 99.4% (169/170)! Producing two litres of urine eases this down to an efficiency of merely 98.8% (168/170). Now, that's what we call high running efficiency.But what does 'filtering the blood' actually mean and how is this done exactly? In each kidney there are about 1 million miniature filters called nephrons; they run from the lower part of the cortex deep into the pyramids. It is in the nephron that the blood is filtered and the urine produced in five main stages, first through Bowman's capsule (1) and into the proximal convoluted tubule (2), then along the loop of Henle (3) and into the distal convoluted tubule (4), and finally out through the collecting duct (5) and into the ureter to the bladder. The filtrate and the concentrated blood course separately through the nephron only once on a one-way trip through the interstitial medium in which it is embedded in distinct but intertwined vessels. Along this winding course take place the delicate regulation of blood pressure, the filtration, the reabsorption of water and useful substances, the concentration of wastes into the filtrate that will become urine, and the regulation of water content and electrolyte balance. Here's a description of how it works:Stage one: Bowman's Capsule The blood coming into the nephron first enters a little spheroidal structure 0.3 mm in diameter (Bowman's capsule) where about 20% of it is mechanically filtered to separate the fluid part called the plasma from the solids. It is 'mechanical' in the sense that it is pressure driven and based on particle size: smaller stuff like water, minerals, glucose and amino acids, together with the metabolic waste like urea and uric acid pass through, whereas large stuff like blood cells, proteins and fats do not. This is similar to how a water filter works: the water goes through the porous but densely packed carbon or ceramic block that stops most of the large particles like chemicals and metals, but allows the water to pass. And just as the filtering efficiency of a given filter depends on the pressure of the water supply, the filtering through the glomerulus in Bowman's capsule depends intimately on the pressure of the blood supply. If the pressure is too low, the filtering is inefficient. But if the pressure is too high the delicate filtering structures are damaged. The pressure must therefore be just right for the circumstances, (the conditions being obviously very different when we are running and when we are sleeping).Stage two: The Proximal Convoluted Tubule The fluid moves from the capsule into the proximal (as in: close-by) tubule. The blood moves from the larger afferent (as in: towards) arteriole where the pressure is monitored before entering Bowman's capsule, into the smaller efferent (as in: away-from) arteriole after passing through the glomerulus. It is now much thicker and more concentrated. Here, most of the water (about 65%) and almost all sodium are reabsorbed from the filtrate back into the blood, in addition to all of the glucose and amino acids, (none should end up in the urine), and some urea. If the pressure is even slightly lower than it should, the juxtaglomerular (as in: next-to-the-glomerulus) pressure-sensing cells in the afferent and efferent arterioles, secrete renin that flows into the bloodstream, and stimulates the release of angiotensin I from the liver, which is then converted in the lungs to angiotensin II, a powerful vasoconstrictor that promotes the contraction of the blood vessels to raise blood pressure, but also triggers the secretion of aldosterone in the adrenal glands, which in turn stimulates more reabsorption of water and salt in the nephron, also for the purpose of raising blood volume and pressure.Stage three: The Loop of Henle Most of the water and salt, and all the organic molecules like glucose and amino acids are reabsorbed from the filtrate back into the blood through a network of tiny blood vessels (capillaries) in the first part of the proximal convoluted tubule, straight after its emerging from Bowman's capsule. From there, the vessel changes in shape and direction, and becomes what is named the Loop of Henle: a crucial element of the nephron that has a water-permeable descending limb and a water-impermeable ascending limb. As the filtrate travels down, water moves out because of the higher concentration of sodium in the embedding interstitial medium, and is reabsorbed by tiny capillaries back into the blood. The deeper it descends, the higher the sodium concentration grows, the more water comes out of the filtrate, and thus the more concentrated it becomes. As the concentrated filtrate travels back up along the ascending limb of the loop, it is sodium that is now pulled out, but this time by active transport through little pumps instead of by osmosis as for the water in the descending limb. This is necessary to recover as much sodium as possible and maintain the gradient of concentration of the interstitial medium in which the loop of Henle is embedded.Stage four: The Distal Convoluted Tubule The next leg of the trip---a very important one indeed---is through the distal (as in: distant) tubule. It is here that pH and electrolyte levels are regulated. It is also here that we find the chemo-sensing macula densa cells tucked in between the afferent and efferent arterioles, next to their pressure-sensing juxtaglomerular cells. Blood pH is regulated by either absorbing bicarbonate and secreting protons to increase acidity, or vice versa, (without a doubt the much more common alternative), by secreting bicarbonate and absorbing protons to make the blood more alkaline. Sodium can be left to be excreted or it can be reabsorbed and potassium secreted into the bloodstream under the influence of the hormone aldosterone, and calcium can also be excreted or reabsorbed but in this case under the influence of parathyroid hormone or PTH.Stage five: The Collecting Duct The distal convoluted tubule is endowed with a system of collecting tubules to which is delivered the filtrate, (now practically urine), and that merge into the main collecting duct that carries the liquid to the ureter into the bladder. On this final stretch in the collecting duct through the interstitial medium of the nephron, a little more water can be squeeze out of the already concentrated urine. This, however, only happens in the presence of the very important hormone vasopressin (also called anti diuretic hormone or ADH), which is secreted when the body is dehydrated.This amazing process takes place in millions of nephrons tightly packed and organised in each of the two kidneys, continuously throughout the day and night, from the moment the kidney starts to work in the not yet born child, to the moment we die, either from kidney failure or something else. And to appreciate just how amazing it really is, consider this back-of-the-envelope calculation: 1 million nephrons are packed into 7 pyramids makes about 150 000 per pyramid. Taking a pyramid to be a cone with a base of 2 cm in diameter gives a surface area for the base of about 3 cm squared (Pi*R^2, and R=1). Dividing 150 000 nephrons by this surface area in which all of them must be packed gives a density of 50 000 nephrons per squared cm. Since there are 100 squared mm in 1 squared cm, this makes a density of 500 nephrons in every square mm over the surface of the base of each pyramid, and remember that they must all squeeze in together even more as they penetrate towards the tip of the pyramid and its collecting calyx. Can you even imagine how small this is, without even considering the incredible complexity with which it all works? Gray's Anatomy states that the thin part of the Loop of Henle is 30 microns in diameter, whereas its thick part is 60 microns, and it is safe to assume that most tubular parts of the nephron are probably also in this range. This is truly amazing. But appreciating this, we can also appreciate how incredibly fragile each nephron must be. And by the way, once a nephron is dead, it's dead forever.Now, blood pressure is intimately related to blood volume (amount of water in it) and blood osmolarity (the concentration of solutes, mostly sodium, and to a lesser extent the other electrolytes as well as glucose). Maintaining these in balance is essential to the functioning of everything in the body. For this reason, there are pressure sensors throughout every blood vessel, and osmolarity sensors in the hypothalamus of the brain, as well as highly sensitive sensors of both kinds in the kidney itself. A drop in volume sensed by the pressure sensors in the blood vessels, or a rise in solute concentration sensed in the hypothalamus, will trigger the release of vasopressin from the pituitary gland. Vasopressin will signal the kidney (the collecting duct) to release more water for reabsorption into the blood stream, in order to counter the drop in blood volume and rise in solute concentration. Vasopressin, just as angiotensin, will make the blood vessels constrict and tighten to maintain the blood pressure constant. It will also stimulate the secretion of glucose from the liver in case fast reaction times become necessary, as well as clotting factors and platelets to make the blood thicker and stickier, and prevent excessive blood losses in case of injury. All of these are part of the standard stress response. Vasopressin will also stimulate the secretion of the stress-induced adrenocorticotropic hormone or ACTH that will act to reinforce all of the above in what will amount to a heightened stress response.Dehydration---especially chronic dehydration---is probably the greatest source of physical stress in most of us. We, unfortunately, tend to live our lives completely oblivious to this fact, and therefore suffer the consequences a little more acutely with each day that passes.What we need to doAlthough all of this is in many ways awfully complicated, what we need to do to make sure the kidneys function properly is quite simple: drink more water, take more magnesium and less calcium, alkalise the body and its tissues.More water This is by far the most important: proper hydration by drinking plenty of water---not fluids in general, just plain water---especially in the morning when the body is most dehydrated, before eating anything, and then before each meal.Imagine what would happen to a water filter if the incoming water were just slightly cloudy with dissolved clay particles? It would work, but over time, (obviously faster than it would in the absence of clay), it would get clogged up. Now, what if there were more fine clay particles? The filter would get clogged up faster given that its role is to stop and store the particles so that the water coming out can be clean and clear. But in addition to that, because the incoming water would necessarily be thicker and more viscous, the filter would not work as well under the same pressure. To work properly it would need a higher pressure to help push through the more viscous water, but this higher pressure (if it could be adjusted upwards) would inevitably stress the filtration system as a whole and thus shorten its 'life'. What if, in the extreme, the incoming water were really thick, brown and muddy? It's pretty simple: no water would make it out of the filter because it would instantly clog up.This analogy is definitely not exact but it is clear and adequately illustrative. To function well, the kidney needs the right blood pressure, blood flow, blood volume, blood viscosity and osmolarity (concentration). As soon as either pressure, volume or sodium concentration drops, the renin-angiotensin-aldosterone is activated and reinforced by the stress response related to secretion of vasopressin (anti diuretic hormone), all acting to constrict the blood vessels, make the blood more viscous and increase reabsorption of both water and sodium to re-establish a functional equilibrium. Imagine now this thick, viscous, sticky blood going through the exceedingly fine arterioles and capillaries in the nephron, and the difficulty with which wastes would be filtered out and dissolved in the water that should be available but isn't. Now, picture this happening throughout the 24 hours of the day, week after week and year after year. It's no wonder kidney problems are so common!So, at the very least we should drink one litre before breakfast and 500 ml before each of the other two meals, allowing each time 30 minutes for the water to be absorbed into the digestive system and then into the blood before eating. It is better to drink more than this, always on an empty stomach, and to take enough unrefined sea salt to match our water intake. Doing this is already enough to ensure proper kidney function and elimination of the bulk of the metabolic wastes through the urine, preventing in this way the formation of kidney stones.More magnesium and less calcium The formation of calcium stones is more than obviously related to the fact that we are all in general over-calcified and vitamin K2 deficient, consuming way more calcium than the magnesium and not enough vitamin K2 needed to keep that calcium from settling and crystallising in our tissues, blood vessels, joints, and kidneys. Therefore, to avoid calcification we must avoid over-consuming calcium, and we must supplement with magnesium and vitamin K2. This will also, over time, dissolve existing calcium stones and other sites of calcification in soft tissues.More alkaline and less acidic The kidney's main purpose is to excrete acidic wastes by dissolving them in water. But all digestive and metabolic wastes are acidic, and there are many sources and forms of acid wastes that all contribute to increase the overall acid load on the body. In particular, refined sugars and protein. The heavier the load, the more acidic the blood becomes. Since the blood must remain alkaline, the acid can be eliminated, neutralised or stored in tissues. All three lines of defense are used: the kidneys try to eliminate as much as possible, alkaline minerals like calcium, magnesium and potassium are pulled out of the bones to neutralise blood acidity, and excess acid is stored away in tissues. Everything is done to take it out of circulation. The more acid is stored, the more acidic the tissues become. And the more acidic the body is, the less is its alkalising potential and the harder it is for the kidneys to dissolve and eliminate the acid that should be eliminated on a continual basis. There are fundamental physiological arguments that explain how tissue acidosis is at the root of literally every health problem and disease, (I will write about this more specifically on other occasions), but even without any further considerations, the only sensible conclusion is that the less acid-forming foods and drinks we ingest, the healthier the tissues, the kidneys and the body will be.The most strongly acid-forming foods are refined sugars. Next are meats, eggs and milk products, then flours, grains and starches. The most strongly alkaline-forming (acid-neutralising) foods are raw and green vegetables, especially salads and leafy greens, as well as watery vegetables like cucumbers and celery. The more chlorophyl, the more alkalising. Parsley, basil, cilantro and all grasses are therefore alkalising and cleansing superstars.Looking beyond single foods we find that certain combinations make the results indigestible and thus promoting of either putrefaction (protein with sugars or starches) or fermentation (simple sugars with most everything else). Both of these lead to the formation of a lot more acid waste in the digestive system a great part of which ends up the bloodstream. Adopting an alkaline diet will very quickly help balance blood pH and promote maximum excretion of acid wastes. Over time, this will allow the body to not only recover proper digestion and elimination on a meal-per-meal and daily basis, but also to eliminate acidic wastes stored in our tissues throughout the body, thus ridding it of aches and pains, the potential for chronic inflammation or infection, as well as for more serious degenerative diseases like arthritis, cancer and multiple sclerosis, for example.Related readingIf you want to read more about water, salt and kidney function you can read How much salt or how much water? For more information about the importance of water in digestion and health read Why we should drink water before meals and Water, ageing and disease. For more on calcification, the importance of minerals in general and magnesium in particular, you can read Minerals and bones, calcium and heart attacks,Why you should start taking magnesium today and Reversing calcification and the miracle of vitamin K2 For more on the importance of proper hydration in treating chronic inflammation read Treating arthritis I: super-hydration, alkalisation and magnesium.If you enjoyed reading this article, please click "Like" and share it on your social networks.

Read More

Two articles that changed my life

Two days ago, on October 23, I turned 40. For me, it feels different than every other birthday I have had: it feels like the marker of the transition between what can be considered young adulthood from 20 to 40, and middle adulthood from 40 to 70, which is then simply followed by old age. Maybe this is also linked to the fact that from the time I started competing, first in running track and field, then in road cycling, duathlon (running and cycling), off-road cycling and eventually in long distance running, I have always been in the normal, standard 18-40 category (like almost everyone else, I thought). And now, starting with my first race in the first level Seniors from 40 to 50 a couple of weekends ago in Bordeaux at the Ariane Cross 2012, I am definitely, and will be for the next 10 years, in the over 40 category. So, I have been reflecting a little on the past and the future: What is really important to me, what have I done and accomplished, what do I want to do in the future and how can I get there? Simple questions whose answers are not so simple.In this context, I want to share two articles that completely changed my life, and completely changed my state of health, in some respects, rather suddenly, and in others, gradually over the years. Interestingly, I stumbled upon and read them both in the same week almost exactly five years ago. I won't summarise, discuss their contents, nor describe the positive effects the simple but radical changes in dietary habits they prompted me to instil have had on me, on my wife Kristin and on our son Laurent. I simply encourage you to read them for yourself, and sincerely hope they will benefit you as much as they have us, and, I am sure, everyone who has ever read and applied the information they contain to their diet.What is clear to me now much more than it has in the past, is that no matter what information we are presented, its impact depends entirely on how receptive we are to it. And this depends on all of what we know and think we know, on how we understand the connections between everything we have been exposed to, on our habits and tendencies, on previous experiences throughout our life, and very importantly, on the circumstances that form the context in which the information is brought to our attention. Thus, let me hope that these two articles come at a time that is ripe for you to appreciate their importance in regards to your own health, that of the people you care about, and everyone else for that matter.The two articles are Insulin and Its Metabolic Effects by Ron Rosedale, MD (you can get the pdf here), and The Skinny on Fats by Mary Enig, PhD (get pdf here). After reading them, please consider sending this link to those you know who will or even possibly appreciate it. As you will see from the few case histories at the start of Rosedale's presentation, the question of understanding and controlling insulin can really be a matter of life or death.

Read More

Treating arthritis I: super-hydration, alkalisation and magnesium

This is entitled Treating arthritis I, because I want to highlight that it is the first phase of what I think is of the most fundamental importance for people suffering from any form of arthritis. It should really be entitled Treating and preventing any and all disease conditions in everyone I, because these measures are truly fundamental to optimal health in all respects and for everyone throughout life. So even if you don't have arthritis, you should read on.This first phase should be viewed as one during which you train yourself to acquire new habits. It is not a treatment per se, but rather a prescription for the basis of a new daily rhythm where hydrating and cleansing the body are of the most fundamental importance. In the end, it is really very easy and very simple. It's just that we need to get used to it.Arthritis is a word that means joint (arthro) inflammation (itis). There are tons of different types of arthritis (in the hundreds), but all of them are manifestations of the same thing in different joints and somewhat different ways. And the symptoms: the stiffness, the breakdown of cartilage and other tissues, the ossification or rather calcification, the crippling pain, are all related to the inflammation. But what if there were no inflammation? Would there be no arthritis?[caption id="attachment_11377" align="aligncenter" width="722"]

what-arthritis-pain-feels-like-722x406

Illustration of painful, inflamed, arthritic joints. (Image taken from Everyday Health)[/caption]Without inflammation there is no tendonitis where a tendon gets inflamed like in the well known tennis elbow. Without inflammation of the lining of the arteries there is no plaque and no atherosclerosis, and thus no heart disease and no stroke. Without inflammation there is no Multiple Sclerosis (MS), the inflammation of the myelin sheath that covers nerves, and no Crohn's disease either, inflammation in the gut. We could go on and on like this because inflammation is at the heart of almost every single ailment from which we suffer. The reason is simple: inflammation is the body's way of responding to injury in our tissues.We sprain an ankle and it swells up by the inflammation that follows the partial tearing of ligament and tendon: this is essential for bringing plenty of blood carrying all the specialised molecules and nutrients necessary to repair the injured tissues. What is the best course of action? Just rest and allow the ankle to heal. The more we use it, the slower the healing will be, the longer the inflammation will last, and the more we will increase the chances of causing some more serious or even permanent damage to these fragile tissues. Without the body's inflammatory response mechanisms, healing would be impossible. In fact, repair and growth would also be impossible; muscle growth would be impossible. The process is rather simple: stress and tear (injury) followed by inflammation and repair or growth. This applies to body builders who develop enormous muscle mass over years of intense daily workouts, but it also applies to a baby's legs kicking and tiny hands squeezing your index finger tightly. It applies to their learning to hold their head up and pulling themselves to their feet with the edge of the sofa to then take those first few steps. It applies to me, to you and to every animal. So, once again: repair and growth of tissue depends on the body's inflammatory response mechanisms. In a well-functioning metabolism, this process takes place continuously in a daily cycle regulated by activity during the day and rest during the night: stress, tear and injury to tissues during activity; repair, growth and cleaning during the night.Difficulties arise when inflammation becomes chronic. Either a low-grade inflammation that we can ignore completely and go about our business until it manifests in the form of a serious health concern, or a sustained, sub-acute state of inflammation that does indeed make it difficult to go about our business, but that we can nonetheless learn to ignore or cope with hoping that it will eventually disappear. Unfortunately, this is how it is for most of us to a greater or lesser extent, whether we are aware of it or not. If it weren't the case, there wouldn't be hundreds of millions of people suffering from arthritis the world over, and atherosclerosis-caused heart attacks and strokes would not be claiming the lives of more than one quarter of the population of industrialised countries.As an aside, for those of you who are interested in measurements and quantifiable effects, among the best markers of chronic inflammation are C-Reactive Protein (hsCRP) and Interleukin-6 (IL-6). The number of white blood cells relate to immune response, and if elevated mean the body is fighting something. Elevated concentrations of Ferritin and Homocysteine (HcY) are also associated with chronic inflammation much elevated risks of heart attack and stroke. You can easily get a blood test to check those numbers among other important ones (see Blood analysis: important numbers).So what is it that causes a person to develop arthritis at 50 or even 40 years of age, while another person only begins to have mild signs of it at 80? What is it that causes a teenager to develop the crippling Rheumatoid Arthritis (RA) at 16, while none of her friends do? Why does only 1 in 400 develop Ankylosing Spondylitis (AS) or bamboo spine, characterised by the chronic inflammation of the spine, the ossification and gradual fusion of the vertebrae? Who knows?But, for example, approximately 90% of AS patients express the HLA-B27 genotype and exhibit the HLA-B27 antigen, which is also expressed by Klebsiella bacteria. Could it be the bacteria that causes the damage and injury to spinal tissues and structure, which then follows by inflammation that over time becomes chronic, and since the bacteria remains and continues its damaging activities, the inflammation continues to grow together with all the awful symptoms? Maybe. The debilitating effects of certain bacteria and viruses such as Epstein Barr or HPV for example, that persist in the bloodstream over years and decades, are well known. And the chronic inflammation that results of the activity of infectious agents such as these is also a well established effect, even claimed by some to be among the primary causes of arterial disease (see Fat and Cholesterol are Good for You in the Bibliography page.But whether it is AS or arterial disease, MS or tendonitis, what is common to all is inflammation, and what needs to be addressed are the causes of the inflammation, not the inflammation itself, which is what we do with anti-inflammatory medication. The inflammation is the body's response to the injury. What we need to do is find and stop the process causing damage and injury to our tissues, and once the tissues have healed, the inflammation will disappear of itself.There are many things that cause injury to our tissues, and we will look at all the most important ones in greater detail in subsequent posts, but it is fundamental to address first order issues first. Among the most fundamental issues of all are therefore those with which we concern ourselves in the first phase of treatment: super-hydration, alkalisation and magnesium. But the truth is that these fundamental elements are what everyone concerned with optimising their health should actually concern themselves with first, before everything else.Super-hydrationChronic dehydration is at the root of so many health problems that it is hard to know where to begin. I've written a few posts on the importance of water that you can identify by their title. If you've read them and want to know more, you should read Your Body's Many Cries for Water (see Bibliography). In relation to arthritis, however, water is not only the primary means to reduce inflammation of stressed cells and tissues, but it is also what gives our cartilage suppleness and flexibility.Cartilage a very simple tissue. It is water, 85% in healthy cartilage, down to 70% or less in compromised cartilage and in most older people, held within a matrix of collagen and other proteins that consists of a single type of cell called chondrocyte. These cells have very special electrical properties that give cartilage its amazing resistance to friction and pressure. Without sufficient water, however, the chondrocytes cannot work correctly, cartilage dries out and breaks down, and calcification grows.What is totally under-appreciated is that because cartilage does not have a blood supply, nerves or lymphatic system, water makes it into the cartilage through the porous end of the bone to which it is stuck, and the only way water can make it into the bone in order to get to that porous end to which the cartilage is attached is through the blood that makes it into the bone.Since there is, within the body's functions, a definite hierarchy in water usage in which the digestive system is naturally the first served since it is through it that water enters, even the mildest dehydration can be felt in the function of the most water-sensitive tissues like those of the lungs (90% water) and muscles (85% water), (something any athlete who has drank alcohol the night before a race or even training run or ride will have noticed), it is unfortunately often the cartilage that suffer the most.Dehydration will make it such that the soft conjunctive tissues at the ends of our bones, in every joint, and that allow us to move will not get the water supply they need to remain well hydrated, supple and flexible. This is really the most important point to remember. What is also highly under-appreciated is the vital importance of silica in the form of silicic acid in the growth, maintenance, repair and regeneration of all connective tissues, including and maybe especially bones and cartilage (here is a good article about it). Silicic acid should therefore be included in all arthritis treatment programmes.How do we super-hydrate? By drinking more, as much as possible on an empty stomach, and balancing water with salt intake. You should read How much salt, how much water, and our amazing kidneys, and make sure you understand the importance of a plentiful intake of water, an adequate intake of salt, and the crucial balance of these for optimal cellular hydration and function. Detailed recommendations are given below.AlkalisationChronic acidosis, some would argue, is not only at the root of innumerable health complaints and problems, but that it actually is the root of all health disorders. The reading of Sick and Tired, The pH Miracle and Alkalise or Die is, I believe, enough to convince most readers that that premise is in fact true. Not surprisingly though, it is not possible to alkalise bodily tissues without optimal hydration. And so we immediately understand that chronic dehydration is the primary cause of chronic and ever increasing tissue acidosis. Therefore we address both simultaneously, and in fact, cannot do otherwise.Briefly, what is essential to understand is that healthy cells thrive in an alkaline environment, and indeed require an alkaline environment to thrive. Conversely, pathogens such as moulds, yeasts, fungi, viruses and bacteria thrive in acidic environments. Healthy cells thrive in well oxygenated aerobic environments, whereas pathogens thrive in anaerobic environments deprived of oxygen. Since this is so, we can say, crudely speaking, that if the tissues and inner environment of the body---its terrain---is alkaline, then pathogens cannot take hold nor develop nor evolve nor survive in it. On the other hand, if the body's terrain is acidic, then they thrive, proliferate, and overtake it, sometimes slowly and gradually, but sometimes quickly and suddenly, causing sickness and disease.Everything that we eat and drink has an effect that is either alkalising, acidifying or neutral. This is after digestion, and has little to do with taste. All sweet tasting foods or drinks that contain sugars, for instance, are acidifying. I will write quite a lot more about pH and alkalisation in future posts. For now, we are concerned with alkalising through super-hydration, and this involves drinking alkaline water and green drinks. By the end of phase I, drinking your 2 litres of alkaline water and 2 litres of super-alkalizing green juice should be as second nature to you as brushing the teeth before bed.MagnesiumAs I attempted to express and make evident the importance of magnesium for every cell and cellular process in the body in Why you should start taking magnesium today, and thus show that we all need to take plenty of magnesium daily in order to both attain and maintain optimal health, for someone suffering from arthritis it is extremely important, it is crucial. And the reason is very simple: arthritis is characterised by inflammation, stiffening and calcification. They come together, of course, and it is useless to even wonder if one comes before another. Regardless, the best, most effective, most proven treatment or antidote for inflammation, stiffening and calcification is magnesium.Magnesium, injected directly into the bloodstream, can almost miraculously stop spasms and convulsions of muscle fibres, and release, practically instantaneously, even the most extreme muscular contraction associated with shock, heart attack and stroke. This is used routinely and very effectively in birthing wards and surgery rooms. Magnesium is the only ion that can prevent calcium from entering and flooding a cell, thereby causing it to die, and magnesium is the best at dissolving non-ionic calcium---the one that deposits throughout the body in tissues and arteries, and over bone, cartilage, tendons and ligaments---and allowing all this excess calcium to be excreted: precisely what we must do in treating arthritis.In addition, magnesium is very effective at chelating (pulling out) both toxic heavy metals like mercury and persistent chemicals that bio-accumulate in blood, brain and other tissues. For too many unfortunately unsuspecting people, heavy metal toxicity is the cause of a plethora of various symptoms, wide-ranging in nature, hard to understand or associate with some known and easily identifiable condition, but that cause them often immense discomfort up to complete disability.Putting all of this into practiceWhen you get up in the morning, you go to the bathroom, undress and spray or spread on your legs, arms chest and belly, neck and shoulders, the 20% magnesium chloride solution (4 teaspoons of nigari with 80 ml of water for a total of 20 g in 100 ml of solution). You wash your hands and face well, put your PJs back on, and head to the kitchen to prepare your water and green drinks for the day.Line up three wide-mouth 1 litre Nalgene bottles. In each one put: 5 drops of alkalising and purifying concentrate (e.g. Dr. Young's puripHy) and 10 drops of concentrated liquid trace minerals (e.g. Concentrace).In the first bottle, add 50 ml of the 2% solution of magnesium chloride (made with 4 teaspoons of nigari dissolved in 1 litre of water), 50 ml of aloe vera juice, 20 ml of liquid silicic acid, fill it up with high quality filtered water, shake well to mix, and take your first glass with 1 capsule of Mercola's Complete Probiotics. You should drink this first litre over the course of about 30 minutes, taking the third or fourth glass with an added 1-2 teaspoons of psyllium husks. (The aloe vera and psyllium husks are to help cleanse the intestines over time.)In the second and third bottles, add a heaping teaspoon of green juice powder (e.g., Vitamineral Green by HealthForce), 1/2 to 1 teaspoon of fine, grey, unrefined sea salt, 1/4 teaspoon of finely ground Ceylon cinnamon, a heaping mini-spoonful of stevia extract powder and a single drop of either orange, lemon or grapefruit high quality, organic, food-grade essential oil. Shake well. One of them you will drink between about 10:00 and 12:00, the other between 15:30 and 17:30. Shake every time you serve yourself a glass or drink directly from the bottle to stir up the solutes in the water. You should take these two bottles with you to work and/or keep them in the fridge until needed: the drink is really nice when it's cool.Now that the magnesium has been absorbed through the skin---this takes around 30 minutes, you can go have a shower to rinse off the slight salty residue that feels like when you let sea water dry on your skin without rinsing it off. You should wait at least 30 minutes after you have finished your first litre of water before you eat anything.By about 10 or 10:30, depending on when you finished breakfast, you should start to drink your first litre of green drink and continue until about 12:00 or 12:30. Make sure you finish drinking 30-45 minutes before you eat. Wait at least couple of hours after eating. Then start drinking the second litre of green drink by about 15:30 or 16:00 until about 17:30 or 18:00. Again, make sure you stop drinking always at least 30 minutes before eating. Depending on when you eat dinner, you should drink a half litre of plain water 30 minutes before the meal. The general rules for drinking you should follow are: 1) always drink at least 500 ml up to 30 minutes before eating, and 2) do not drink during or within 2 hours after the meal.Before going to bed, take a small glass of water with 50 ml of 2% magnesium chloride solution. And that's it for the day. And tomorrow and the next day and the day after that, keeping to this schedule, until it becomes perfectly natural and customary. After four weeks, you should do another blood test and see how the numbers compare to those before starting. In addition, if you are interested in this from the scientific standpoint, or just curious, or both, you should get Doppler imaging of your coronary and cerebral arteries, as well as an MRI of the joints in your body, including the spine, before you start and at then end of every phase. It will also be extremely informative to test and record the pH of at least your first urine every morning; any additional urine pH readings will be very useful and tracing the progress of the gradual de-acidification of your tissues and the days and the weeks progress. And finally, the transdermal magnesium therapy (putting the 20% solution on your skin), should last 6-8 weeks. By that time, you intracellular magnesium stores should have been replenished. We continue taking the 2% solution indefinitely, and use transdermal magnesium once in a while (once or twice per week).The great advantage of the transdermal magnesium is that almost all of it is absorbed into your tissues and bloodstream. The oral magnesium is absorbed a level between 25 and 50%, and this depends primarily on the amount of magnesium in the blood when you take it. This is why it is very important to take it first thing in the morning when magnesium is at its lowest, and then in the latter half of the afternoon and before bed, those times when concentrations are lowest. You don't have to worry about too much magnesium because any excess will be excrete in the urine and faeces.You should just worry about not enough: that's the real problem. Incidentally, the fact that almost all the magnesium that you put on your skin is absorbed underlines the importance of carefully choosing what we put on our skin. Because in the same way, anything we put on it will be absorbed into our system. So putting coconut and almond oil is just as good for our skin and our health, as it is bad to put on creams and lotions with synthetic chemicals and compounds that all make their way into our blood. General rule: if you cannot eat it, don't put it on your skin.Update: read these Updated recommendations for magnesium supplementation.That's it for the first phase: mostly drinking a lot more than you used to, with a few special tweaks to what and when you drink. I haven't mentioned anything about food even though you can obviously know from the rest of the articles on the blog that this will come in time: in the second phase. We first deal with the first order terms, then the second order terms, and after that with the third and fourth order terms. That's very important to grasp: what has the most and what has the least impact and thus importance.If you enjoyed this article, please Like and share it to help other people.

Read More

A simple meal plan for my friend Cristian

Cristian is a physiotherapist, osteopath and Pilates instructor at Fisico, the gym where I have been going since I moved to Spain in October 2006. We don't spend much time together, but have a good connection. I attended his Monday lunchtime classes and did one-on-one sessions with him in the Pilates studio every second Wednesday for several years. I don't attend either one anymore because I began giving lunchtime Pilates and body mindfulness classes myself to a small group of interested people at work on Tuesdays and Thursdays. Since I need the midday break on Mondays, Wednesdays and Fridays to do my personal high-intensity, super-slow resistance training, this leaves no other gaps in the otherwise full weekly schedule. Nonetheless, we see each other and chat regularly.Cristian reads my posts, tells me he finds them interesting and trusts that I know what I'm talking about, but often finds the stuff too technical or complicated. So, he asked me to just give him a simple eating plan to help him change his eating habits into healthier ones in exchange for a body therapy session. I readily accepted and here it is. (This is closely modelled on how I have been eating for the last several months, just that I have gradually shifted everything to later and later in the day, and you'll understand why in a second).The first thing is to stop thinking in terms breakfast, lunch and dinner, and instead start thinking in terms of hydrating and cleansing, and nourishing and rebuilding. This is a very important shift in focus and perspective that, in fact, leads to a rupture with the traditional understanding about food and eating cycles as they have been handed down and taught to us ever since we came into this world. (Fortunately, I know that Cristian appreciates the non-conventional and thus the non-traditional.)Thinking in terms of these two cycles of cleansing and hydrating, followed by nourishing and rebuilding, is simply a reflection of the body's own natural daily cycles. The cleansing starts sometime before we wake up in the morning, and can be extended well into the afternoon. Cleansing of accumulated acid in the blood and throughout the body from the food and activities of previous day that is excreted mostly through our urine. And cleansing of the toxins and more or less well digested remains of the food we ate in the previous 24 hours that we eliminate through the intestines. Since this is what the body must do to keep itself functional and healthy, it is most appropriate to help in this regard instead of making it harder.This is therefore what we want to do: cleanse by supplying liberal amounts of water and drinks (green juice) that help the body both dilute stored acid and eliminate it from the blood (uric acid) and tissues (urate). And cleanse the colon by taking psyllium husks and or chia seeds sometime in the morning with our water and green drink. Eating cuts this cleansing cycle short and thus its benefits. Extending our overnight fast into the cleansing cycle even to 10 or 11 is a good start. And then eating less during the day while we are busy and active, just to keep us from feeling very hungry, is perfect. The longer we cleanse and wait before eating, the more effectively our body will excrete stored acid and clean and repair itself over time. The less we eat during the day, the more cleansing will continue throughout. The nourishing and rebuilding cycle starts in the late afternoon and extends throughout the night.So, start by extending your overnight fast until 10:30, and throughout the morning drink plenty of pure water and dehydrated green juice powder diluted into it. You should drink a total of about 2 litres by 10:30. Keep a little container of unrefined sea salt with you and take a pinch every so often. This will help maintain sodium and chloride concentrations in the blood and also help in eliminate uric acid.You will probably be hungry by 11h and so you can make yourself what I consider to be maybe the to best breakfast: a coconut milk smoothie. With one can of coconut milk (400 ml), a small handful of frozen berries or a heaping teaspoon of powdered ginger or cinnamon or powdered aniseed or pure cocoa powder (less often than the rest), and a tiny pinch of stevia with an added 100 ml of water, you will blend a delicious smoothie whose calories come almost entirely from the coconut oil in the milk whose health-promoting qualities are almost beyond belief (more on that on another occasion), and whose flavour will be a great, slightly sweet, with the rich and creamy texture but mild flavoured coconut milk.Since one can of coconut milk contains typically about 65 g of fat (Dr Georg is the brand I like the best and recommend), this gives a total of about 600 Calories, (which is a lot!), almost from fat alone---and this is the key, because fat does not stimulate insulin secretion, it gives us plenty of readily useable energy to fuel all cellular activity---this is especially true for medium chained fatty acids like those found in coconut oil, and it makes us feel full and satisfied. Therefore, you should pour half of it in a glass, sipping it slowly over about 15 minutes or more to allow the stomach to send satiety hormones to the brain. Keep the other half in the fridge for later. You can have this single glass containing about 300 Calories with a handful of walnuts or almonds, (if you soak them in water overnight, it is much better), to give you something to chew and give you the sense that you are eating something solid. This will without a doubt keep you feeling full and not hungry easily until about 14h or 15h, at which time you can have the second glass with another handful of walnuts or almonds. And this will keep you satisfied into the late afternoon/early evening.If at any other time you feel somewhat hungry and want to snack on something, then buy yourself a bunch of small crunchy cucumbers, some delicious red peppers and excellent avocados, and snack on those, with unrefined sea salt.Now, that you have finished your daily activities, running around here and there, going up and down the stairs of the gym, talking to this person and then that, and that you are finally at home or at a friend's house, you are ready to relax for the evening and start to prepare yourself a plentiful and nourishing dinner. Before you start though, drink another full litre of plain water, and allow at least 45 minutes before eating anything.Your evening meal should always typically include a very large green salad made of fresh dark greens, with plenty of dressing made from olive oil and lemon juice from a freshly pressed lemon, and plenty of unrefined sea salt to taste. The salad can also have red peppers, cucumbers and an avocado cut in pieces on top, for example. You can also make gazpacho without bread and without vinegar: 3 tomatoes, 2 small red pepper, 1 cucumber, 2 cloves of garlic, plenty (1/2 cup) of olive oil, juice of 1 lemon and a teaspoon of salt. Put everything in food processor and that's it. You can add water to make it more liquid.If you want to make the salad your meal, then you need to add some protein for the tissue repair and rebuild that takes place during the night. This can be a couple of boiled eggs ("hard" boiled, but as soft as you can make them and still peel them without difficulty), walnuts, fresh goat's cheese, or some meat. Otherwise, you can make yourself another protein/fat dish to go with your big salad. With that you should feel completely satisfied, and make sure that's the case, but that's it: no bread, no potatoes, no pasta, no rice, no sweet fruits and no desserts, at any time.Summary

  1. Wake up and drink 1 litre of water over the course of 30 or 45 minutes (optional: add 20 drops of concentrace, 15 ml of silicic acid and 15 ml of pure aloe vera juice). Take one dose of a methyl-cobalamin B12 supplement.
  2. By 10:30 Finish drinking 1 litre of "green" water (water with 1 tsp of powdered green vegetable juice). If you can make yourself fresh green vegetable juice, this is amazingly better; always dilute the juice with as much water.
  3. 11 - 11:30 Take 1 glass (1/2 can) of coconut milk smoothie with handful of (soaked) walnuts and/or almonds or an avocado with salt.
  4. 13:30 Start drinking 1 litre of green water and finish in about one hour. Take another dose of a methyl-cobalamin B12 supplement.
  5. 15 - 15:30 Take the other half of the coconut milk smoothie with handful of (soaked nuts) or an avocado with salt.
  6. 18:30 Start drinking 1 litre of plain water with concentrace drops, finish by 19:30 or sooner.
  7. 20:00 Have your dinner

Shopping listThere are a few uncommon things you need to get:

  1. Plenty of fresh veggies for juicing or Dr Young's Doc Broc's Power Plants and purify drops (online here).
  2. Coconut milk and oil for cooking (Dr. Georg brand)
  3. Stevia extract powder (at Ecocentro)
  4. Essential oil of orange to flavour the powdered greens.
  5. Silicic Acid is optional but very good (3 months on, 3 months off)
  6. Aloe Vera juice (pure) is optional but very good (no time limits of constraints).
  7. B12 supplement (I recommend Mercola's cherry spray).

Everything else is food.Final wordsThe first few days might be a little difficult as your body starts to adjust to all these changes, and especially the fundamental metabolic shift from using glucose as the primary cellular fuel to using fats instead. It is always important to drink lots and take salt, but particularly so in the first few days. It is also very important to sleep long and restful nights, which is also always the case, but particularly at the start when the metabolic shift and the most extreme detoxification is taking place.In a matter of less than a week, however, you will feel like a million bucks: you will feel great! Not really hungry, never bloated, and light and energetic. The body will start excreting all the accumulated acid from your tissues, and in so doing find aches, pains, stiffness, discomfort and inflammation gradually fading. The body will start burning off excess fat reserves that have been accumulating throughout the body over the years, and in so doing start to heal the digestive system and detoxify the entire organism. You will find yourself feeling lighter, more prone to exercising and moving, and with higher energy levels. And you will start to feel stronger and younger as your body starts to produce more growth hormone, gradually a little more every day. And the longer you do that, the better you will feel, especially if you make it your default lifestyle.It would also be cool if you got the few blood tests I recommend here at the start and then at semi-regular intervals in the months that follow.

Read More

Why you should start taking magnesium today

Because magnesium is maybe the most important mineral for plant and animal life on Earth. Because magnesium is certainly one of the essential minerals most deficient in our food. And because we are all magnesium deficient.Magnesium was the key element in the evolution of plant life on Earth as it is the heart, the central ion of chlorophyll---the plant's photosynthesising lifeblood. I was amazed when I learnt that chlorophyll and haemoglobin have identical molecular structures, only that chlorophyll has magnesium at its heart, while haemoglobin has iron. This does indeed seem amazing at first, but upon reflection, it seems quite natural, as we can be pretty sure that this is not an evolutionary coincidence since simple cellular life came first, then plant life---obviously dependent on the simplest forms of life, and then animal life---which is completely dependent on plant life.The human body is about 70% water by weight, with about 2/3 inside our cells and 1/3 outside; the dry weight of a 70 kg person is about 20 kg. So we can say that the rest of our weight is various arrangements of naturally occurring elements. But of the 92 naturally occurring elements, a mere 7 of them make up 99% of the body's total mineral content. These essential macrominerals are, in order of abundance: calcium, phosphorus, potassium, sulphur, sodium, magnesium, and chloride (chlorine gas dissolved in water).Calcium is the most abundant and it must be in balance primarily with phosphorus for proper physiological function, but also with magnesium. Phosphorus is the second most abundant, and, present in every cell of the body, it plays a role in almost every chemical reaction. Potassium and sodium work together in their most notable function to transport nutrients into cells and metabolic waste out of them. And hence, potassium is the most abundant element inside the cell, in the intracellular fluid, while sodium is the most abundant element outside, in the extracellular fluid. Sodium is also the primary element on which rely the kidneys for regulating the amount of water in the blood and bodily fluids in general. Chloride works with its siblings potassium and sodium in their role as fluid and acid-base regulators, but it is also the essential element in hydrochloric acid secreted in the stomach to break down proteins into amino acids. Sulphur is necessary for the formation of hair, nails, cartilage and tissue. It is needed for metabolism and a healthy nervous system, plus it aids bile secretion in the liver.Why so important?Among these 7 macrominerals, however, magnesium is king. It is second most abundant element inside cells after potassium, and even though it totals only around 25 g in the average 70 kg human body, (more than half of it stored in bones and teeth, and the rest in muscle and soft tissues), it plays a role akin to that of a conductor in regulating the absorption and excretion of many of its sibling macrominerals, both in the intestines and in our cells. Of the multitude of functions it plays, magnesium is involved as a necessary co-factor on which more than 300 essential metabolic enzymatic reactions depend; it is crucially needed for structural function of proteins, nucleic acids and mitochodria; it regulates production, transport, storage and utilisation of energy in cells; it regulates DNA and RNA synthesis, cell growth and cell reproduction; and it regulates nerve function throughout the body.But certainly most noteworthy, and indeed very important for the vast majority of us magnesium-deficient humans, is that magnesium is what allows muscles to relax: every single muscle cell in our body depends on magnesium to release a contraction instigated by calcium, magnesium's antagonist brother. Going further, only magnesium can inhibit calcium-induced cell death: only magnesium regulates entry, and can thus prevent calcium from flooding a cell to trigger apoptosis (programmed cell death). It is for these two reasons that magnesium is so much more important than calcium. Sadly, we are as over-calcified---caked stiff with calcium from the inside out---as we are magnesium deficient. And that's bad news because the more over-calcified the body grows, the more magnesium deficient it becomes. In addition, as important as it is to optimise vitamin D status, it is now clear that this cannot be done without at the same time optimising magnesium status (1).And in practical terms, what does this mean for you? It means that most modern diseases and conditions are either a direct consequence of or severally aggravated by magnesium deficiency. It means that of all the heart attacks and strokes that claim the lives of most people in industrialised countries, it's estimated that more than half are caused by magnesium-deficiency. It means that hypertension, poor circulation, water retention, osteoporosis, kidney stones and kidney disease are all caused or severely aggravated by magnesium deficiency. It means that arterial plaque buildup (atherosclerosis), arterial wall thickening and stiffening (arteriosclerosis), cardiac arrhythmia and palpitations, headaches and migraines, anxiety, irritability, insomnia and depression are all caused or severely aggravated by magnesisum deficiency. It means that from the seemingly most benign, occasional involuntary twitching of the eye, or the cramp in your foot, calf or hamstring that just seems to you as a brief nuisance unworthy of attention, to the cardiac arrest or stroke caused by a prolonged spasm of a coronary or cerebral artery that can claim your life in a few instants or leave you paralysed and debilitated for the rest of your life, to chronic anxiety, occasional panic attacks, recurring depression, bipolar or schizophrenic disorders, all of these health problems and hundreds more are caused or severely aggravated by magnesium deficiency. Insulin resistance, metabolic syndrome, and diabetes are also intimately related to magnesium deficiency as it is this mineral that allows insulin to transfer its cargo of glucose from the bloodstream into the cell.Like many other realities of our world in the realm of medical sciences and treatment of disease, that this can be so---that we can be in such a dire situation of global magnesium deficiency---is truly mind-boggling given the ease with which it can be both prevented and remedied. But for this one as well as so many other such logic-defying realities in today's medical and health sciences, ignorance is the major hurdle, but the power of the politics of profits cannot be underestimated, and should not be ignored or overlooked.Why so magnesium-deficient?Very unfortunately for us, agriculture is not, and to a great extent, never has been as it should rightly be---feeding and enriching the soils and the land, while at the same time producing from it, foods with the perfect balance of minerals, vitamins and phytonutrients in an amazing and unique positive balance process, ultimately based on a remarkably efficient harnessing of the Sun's energy by the grass and soil. Instead we have an agricultural system that globally pollutes the waters with toxic runoffs, depletes the soils with chemical herbicides, pesticides and Nitrogen-Phosphorus-Potassium or NPK fertilisers, all of which help to slowly but surely sterilise the earth's surface.Now, to give you a sense of the scale of the problem of soil mineral content depletion, as far back as 1936, a hearing was held in the 74th US Senate Congress where the following statement was made:"Do you know that most of us today are suffering from certain dangerous diet deficiencies which cannot be remedied until depleted soils from which our food comes are brought into proper balance? The alarming fact is that foods now being raised on millions of acres of land that no longer contain enough of certain minerals are starving us---no matter how much of them we eat. Our physical wellbeing is more directly dependent upon the minerals we take into our systems than upon the calories or vitamins or upon the precise proportions of starch, protein or carbohydrates we consume (my italics). Laboratory tests prove that the fruits, the vegetables, the grains, the eggs, and even the milk and the meats of today are not what they were a few generations ago. No man today can eat enough fruits and vegetables to supply his stomach with the mineral salts he requires for perfect health."And you can be sure that the situation has gotten worse since then---much, much worse. Just to illustrate the point, all chemicals, whether they are those found in fertilisers, in herbicides or in pesticides, contribute to magnesium wasting. Pollutants in the air that fall back down in the form of acid rain waste magnesium stores because it is simultaneously a potent acid buffer and the most water-soluble of the macrominerals. Therefore, it is also the most affected by acid rain and runoffs saturated with agricultural chemicals.To make matters worse, any processing of a food in its natural form, will most effectively deplete its magnesium content. Here again this is due to magnesium's super water solubility. Such that with every step of processing, more magnesium is lost from the already magnesium deficient food. The result is that all processed foods are basically devoid of it. Fluoride, the reactive industrial by-product and poison that is put into many municipal drinking waters under the false pretence that it is good for the teeth, seeks out minerals like magnesium, and by binding to them makes it impossible for the body to absorb or use. (This is just one of the many, well researched and well documented negative effects of water fluoridation. See the Fluoride Action Network for plenty more details.)And the last straw in this magnesium-depleting scenario is our own evermore stressful lifestyle. Always more stress: stress related to the economic situation in our country; stress related to the stability of "The Market"; stress related to the economic stability of our company; stress related to the security of our own job; stress related to our professional and therefore social status; stress related to worries about our kids' wellbeing, happiness, social development, about their future; stress related to all those deadlines we have to meet, and to those that we set ourselves for our personal projects that somehow always slip to the bottom of the pile of books sitting collecting dust next to your bed; stress about how to save money for hard times, and about where we will go on our next holiday; and on and on and on. Incredible but true: the more time passes, the more technological advances are made, the more stuff we are able to make and use and buy, the more stress there seems to be in our lives.And what does stress have to do with magnesium? Very simply: stress depletes magnesium and magnesium deficiency magnifies stress. How do we know this? By doing a simple experiment where adrenaline is introduced in the bloodstream intravenously, and seeing the levels of magnesium drop immediately, together with those of calcium, potassium and sodium. Stop the adrenaline and they start to make their way back up, but unfortunately, is takes magnesium the longest to recover to physiological concentrations. But the fact is that every time we feel any kind of stress, adrenaline triggers our fight-or-flight response, in which the heart starts pumping, digestion is stopped as blood is diverted from the digestive system to the arms and legs, blood also thickens by the release of clotting factors to prevent excessive blood loss in case we get injured, glycogen stores are released from the liver to be made available as glucose for immediate energy use in the heart, lungs and muscles, and yes, all of these processes are intensely magnesium-dependent, and at the same time, intensely magnesium-depleting.In short, almost all soils on agricultural land everywhere are magnesium deficient, some totally depleted, others just greatly depleted. All foods grown in these soils are inevitably also magnesium deficient, and in some cases even more due to the excess potassium in the chemical fertilisers that prevent the plant from taking up magnesium. All processing of food further depletes magnesium, and our crazy and sickly addiction to stress delivers yet another blow---a final blow. We---all of us---really are magnesium deficient. And many of us severely so. For this reason we all need magnesium supplementation. And the sooner we start, the better off we'll be. If you want to know how magnesium deficient you are, order an RBC Mg test (red blood cells hold about 40% of the body stores of Mg): the lab's reference range can be anywhere from 3.5 to 7, but you want to be at 6.5 mg/dL.Remarkably easy, extremely safe and incredibly inexpensiveThere are several forms of magnesium supplements. Magnesium chloride is the most completely ionised (with a stability constant of 0), and therefore the most easily absorbable in its ionic form by our cells. This also means that it is super hydrophilic (water-loving) and dissolves instantly when in contact with even a drop of water, so it needs to be kept very dry in a well-sealed bag or container. All the better for us, it also turns out to be very inexpensive (about 6 euros/kg) in the form of white, brittle flakes called Nigari, which is used to make tofu.To drink your magnesium, dissolve 20 g (4 teaspoons, and 10 cents worth!) in a 1 litre bottle or 30 g (6 teaspoons) in a 1.5 litre bottle. (This makes a 2% solution of magnesium chloride.) Take 50 ml on an empty stomach when you get up in the morning, and again at bedtime. You can dilute this in as much water as you want because it is the total quantity of magnesium that counts, not the concentration of the solution that you drink. At first or when you feel you need more (stressful day, weakness, cold coming on), you should take another 50 ml in the late afternoon when the body is most in need of it. This will supply 360 mg if you take it three times, and 240 mg if you take it twice per day (magnesium chloride is 12% magnesium by weight. Dissolving 20 g in 1 litre gives 2.4 g of ionic magnesium, and dividing this litre in twenty 50 ml doses yields 120 mg per dose. Therefore 3 doses gives 360 mg and 2 doses gives 240 mg).To absorb your magnesium through the skin, dissolve 20 g in 80 ml of water. (This gives a 20% solution of magnesium chloride---ten times more concentrated than the drinking solution.) Naturally, you can dissolve more magnesium chloride in more water, keeping the same proportions, and storing the solution in a spray bottle. With just 6 sprays on each arm and leg as well as on 6 on your chest and back, you can take up as much as 600 mg of magnesium every day. This is a much more effective way to absorb magnesium because instead of going through the digestive system from which as little as 25% up to 75% of the magnesium will be absorbed depending on many factors but primarily the state of health of your digestive system, which in most of us is appalling, almost all the magnesium is absorbed through the skin and into the bloodstream in about 30 minutes. We use both methods at home.Finally, supplementing with magnesium is extremely safe for the simple reason that it is extremely water soluble: it binds so tightly to water that the magnesium ion forms a hydration shell around itself resulting in a radius 400 times larger than in its dehydrated form. This is unlike any of its macromineral siblings. And for this reason, it is also excessively easy for the body to excrete any excess magnesium either through the urine or in the stools. Therefore, there is virtually no chances of overdosing on magnesium, and no possible negative side effects.So please, for your own good, for the good of your sons and daughters, husband or wife, ageing mother and father, buy some Nigari at your local natural food store, and start magnesium supplementation for all of them. And for the good of your friends and colleagues, tell them about it and send them this article if they need convincing. (In France, Spain and probably other European countries, we find the Celnat brand 1 kg bag of Nigari. I've bought is at Bio-coop stores in Paris, and at Eco-centro in Madrid)Conclusion: Main points to remember

  1. We are all magnesium-deficient, and many of us, dangerously so. This is due to the severe lack of magnesium in soils everywhere and therefore in the foods we eat, due to the fact that processing of whole foods strips most if not all the magnesium that is present in the unprocessed food, due to the fact that our diet is excessively rich in calcium that must be balanced with magnesium in order not to accumulate in our tissues and stiffen everything from our organs to our arteries and to our brain, and finally due to the excessive stress that we all know to be the most remarkable feature of our modern lifestyle.
  2. Magnesium is absolutely essential for relaxing muscle cells including---and maybe most importantly---the endothelial cells that line our blood vessels. Stiff blood vessels cause high blood pressure. This puts great stress on the kidneys and causes a chain of negative consequences that mould into a vicious cycle in kidney deterioration that eventually leads to failure. In addition, stiff blood vessels causes them to suffer much greater damage, especially at bifurcations where the arteries split into finer and finer arterioles. This damage leads to the buildup of plaque, and then to cardiovascular disease, heart attack,s strokes, Alzheimer's and dementia.
  3. We all need magnesium supplementation, and fortunately it is easy, cheap and safe because Nigari is an inexpensive, food grade magnesium chloride salt easy to buy in natural food stores, and because magnesium's ultra water solubility makes it very easy for the body to excrete in the urine and eliminations, which guarantees that that it cannot accumulate excessively. On the other hand, this also means that it takes several months to replenish intra-cellular magnesium levels, and that we need to take it daily.
Read More

A diabetic's meal on Air France

A few days ago, I was updating a reservation on the Air France website in anticipation of my trip from Madrid to Toronto on my way to the Origin of Stars and their Planetary Systems conference at McMaster University. Looking through my personal profile, I found a section where to define a preference for the meals served on long flights. Looking through the list, I was intrigued by the "Diabetic" option.

2000px-air_france_logo

The fact is, I've read more than I ever intended about diabetes. That's because the authors of most, if not all books that relate to natural health and nutrition in some way or another, usually have something to say about diabetes, more specifically, insulin-resistant or adult-onset or type II diabetes. One simple reason for this is that diabetes is so widespread in the populations of industrialised countries that it is almost ubiquitous. Another reason, certainly just as important if not more, is that the most common causes of death in industrialised countries---heart disease, stroke, alzheimer's and cancer---are all much more common in diabetics than they are in non-diabetics, and in all cases, several-fold more common. Doesn't this very naturally suggest that there is a fundamental relationship between insulin-resistant diabetes and these other conditions? Maybe even that what causes the development of the diabetic condition also causes the development of the others?Type II diabetes, also called adult-onset diabetes, should instead always be referred to insulin-resistant diabetes in order to highlight the actual problem---insulin resistance. Unfortunately, it is only rarely referred to as such. Insulin resistance is a description of the state of a cell that does not allow insulin through its membrane to carry glucose to the inside of the cell---it resists insulin's plea to let the glucose enter. The consequence of this is high levels of blood-glucose and insulin that don't drop down as they should to acceptable, let alone ideal physiological levels. In fact, as far as I know, the primary, if not the only criteria used by most MDs to diagnose the onset of diabetes is blood-sugar levels. It is considered normal to have blood-sugar levels anywhere between 65 and 110 mg/dl, but at 120 or above we are considered at risk of developing diabetes.Interestingly, although fasting insulin concentration is a much better, more robust, indicator of not only the condition of insulin-resistant diabetes, but also of the gradual development of it, which does not appear from one year's blood test to the next but rather develops over an entire lifetime, slowly and surely, it is almost never performed in standard blood tests ordered by general practitioners. It should.And why is it better? Because instead of being subject to large fluctuations due to a myriad of different factors as is blood-sugar, such as carbohydrate intake, stress and physical activity, for example, fasting insulin is much more stable, decreasing steadily over the course of several hours, and reflects well the overall state of insulin resistance or sensitivity of our cells.There is another more direct and accurate way of testing insulin sensitivity that involves measuring blood-sugar and insulin concentrations at regular intervals after ingesting a large amount of glucose. But this method is much more involved and lengthy. Fasting insulin is simple, easy, accurate and cheap. It really should always be done in standard blood tests. Request it on your next blood test. Although, if you follow the dietary advice on this blog, you should never even have to think about getting any blood tests done at all. I just do them because I find it interesting.I discussed the insulin mechanism in We were never meant to eat simple or starchy carbohydrates, and also in When you eliminatie insulin-stimulating carbohydrates. But for just a second, forget what you remember about it, and consider the following:Insulin is necessary to clear out excess sugar in the blood: it is the hormone that regulates fat storage. The greater the amount of sugar, the greater the amount of insulin required, and the greater the fat storage. The more often there is sugar, the more often insulin is needed. Insulin resistance in cells develops over time due to over-exposure to insulin, snack after snack, meal after meal, day after day and year after year.Would we not then immediately conclude that in order to avoid developing insulin resistance we simply and straight-forwardly need to avoid raising blood-sugar levels? Furthermore, would we not immediately hypothesise that in order to reverse insulin resistance and regain insulin sensitivity we need to do just that: avoid raising blood-sugar levels? And how might we do that? You already know this: by not eating simple or starchy carbohydrates. Instead, eating most of our calories from fat to provide all the energy and calories needed for healthy cellular and hormonal activity throughout the body, and never or rarely be hungry.Now, what was I served as the special order diabetic meal on the flight from Paris to Toronto that I am still sitting on? The salad was of grated carrots sprinkled with super dry, also kind-of-grated white meat, either of chicken, turkey of tuna, (I can't tell because it didn't have a smell and I don't eat meat, so I didn't taste it). The main course was of a piece of super-dry white fish on a bed of pre-cooked, dry, white rice with boiled frozen ripple-cut carrot slices. This was accompanied by not one of the classic crusty, refined white flour, mini-baguettes they serve on Air France flights, but by two of them. There were also two deserts, a small, dry-baked apple cut in two halves, and a soy-based pudding-like desert. Needless to say that I didn't eat much of this meal. It was an experiment anyway: I was curious to see what a diabetic would be served, and now I know.Before reading the next sentence, could you now tell me what is the main characteristic of the meal I just described?It is a low-calorie, low-protein, super-low fat meal. As a consequence, it is a very high carbohydrate meal: there's obviously nothing else it could be. Well, that's not quite true: it is a very low-mineral and enzyme content meal, highly processed and totally dead. But that's not really important, right? Only calories are important, right? And it is only important that it be low-fat, right?Therefore, a diabetic that goes to the effort of ordering a special meal instead of the standard menu will end up consuming less protein, a lot less fat, and a lot more carbohydrates. This will cause a much greater rise in blood-sugar levels, that will in turn cause a much greater rise in insulin, and in the case of most diabetics will, in fact, require the injection of additional insulin because their cells are already mostly insulin-resistant. This will inevitably cause increased insulin resistance. But to make matters even worse than this already is, because they are eating very little fat, they will be increasingly hungry after each meal, and thus tend of overeat every time they get the chance. And overeat what? … carbohydrates. This is the definition of a vicious cycle. How sad. How incredibly sad.I was just offered by second meal: it was pretty much the same thing with a cold dry meat salad instead of the re-heated dry fish with rice dish. What a laugh. This time, I just turned in down.Oh, and by the way, the first meal was frozen almost solid. Every component, including the carrot salad, baked apple, soy desert and water: everything except for the main course that had been heated. And the second meal was also frozen, but this time, the air flight attendant felt quite sorry about it, and was rather sheepish when offering it to me. How funny! It's a good thing I am used to fasting.

Read More

The worst mistake in the history of the human race

In We were never meant to eat simple or starchy carbohydrates, I mention those three books of Professor Jared Diamond that I have read, in the context of archeological evidence for the ill effects of the grain-based diet that our first farming ancestors adopted some 10000 years ago. This morning, I stumbled upon this article (link to pdf file) by him that was published in Discover magazine in May 1987. He boldly gave it the title The Worst Mistake in the History of the Human Race (link to Discover magazine's online version with adds and everything else). It is a short article that presents the issue succinctly, but nonetheless convincingly, I think.He doesn't mention anything about insulin and its metabolic effects, (maybe he doesn't even know anything about the topic). He only discussed archeological evidence and studies. But I think that if you were not completely convinced by my post that the human animal that we are simply shouldn't be eating simple or starchy carbohydrates at all, then reading Diamond's article will certainly help in that respect. If you were convinced, (which I truly hope is the case), I have no doubts that you will certainly find his article interesting, maybe even more so in the light of the physiological background presented in mine.On the same topic, the very extensive work of Dr. Loren Cordain and his team turned him into a world scientific celebrity, and rightly so, I think. His public lecture on the Origins and Evolution of the Western Diet is really incredibly informative, interesting and eye-opening. Naturally, it goes in the same direction, but from a somewhat different angle.

Read More

A meal plan for an ageing parent

Here is the programme I made for my ageing mother to help her regain strength, health and vitality, but also rebuild cartilage to help in her recovery from hip replacement surgery, which she did impressively quickly. It provides the body the opportunity to cleanse and heal itself from the inside out. As a consequence, the skin will gradually get smoother in appearance, more supple and less wrinkled, and will eventually almost glow with the radiance of health. Your body will gradually burn off all excess fat reserves, and chronic aches and pains will gradually dissolve as the accumulated acid and calcium clears from your tissues. You will regain energy, flexibility, calm and better sleep, and over time, feel completely transformed. You really have to do it and feel it to believe it. But, independently of your state of health (or disease) I guarantee that this programme will without a doubt, over the course of a few months, completely transform your body and your health for the better. It is intended to be followed strictly for at least 2 months, but can be followed indefinitely for vibrant health and long life.First thing in the morning on an empty stomach:

  1. Small glass (200 ml) of plain water with probiotics and chlorella
  2. Small glass (200 ml) of water with 1 table spoon of liquid silicic acid (400 mg)
  3. 50 ml of magnesium chloride solution: 4 teaspoons (20 g) of Nigari flakes in 1 litre of water
  4. Large glass (350 ml) of green drink with psyllium husks or chia seeds: 1 teaspoon of Doc Broc's Power Plants powder, 1 mini-spoon of stevia extract powder, 3 tablespoons of aloe vera juice, 5 drops of alkalising drops (puripHy) and 3 drops of mandarin or orange essential oil in a 1 litre bottle of water with wide neck (e.g. Nalgene; this yields 3 large glasses). Shake well, let sit for a few minutes, shake again and serve. Mix in 2 teaspoons of psyllium husks/1 tea spoon of psyllium and 1 teaspoon of chia seeds/2 teaspoons of chia seeds. Drink the psyllium/chia relatively quickly so that it swells up in your stomach/intestines instead of in the glass.
  5. A few minutes later, take a pinch of two of unrefined, French-Atlantic sea salt.

Throughout the morning from around 10:00 until 13:00

  1. 1 full litre of green drink (optional chlorella)
  2. Pinches of salt to taste

Lunchtime, around 13:00

  1. Small glass of wild berry-coconut milk smoothie: 1 can of whole coconut milk, 2 mini-spoons of stevia extract powder, and 4 tablespoons of raspberries (~16) or blueberries (~20) or strawberries (~4): fresh if possible or frozen if not. Blend well and serve one glass; keep the other glass of later. If you are working, make the smoothie in the morning and take it with you to work.
  2. Supplements: whole-food multi, astaxanthin, vitamin D3: take 25000 IU or during the summer, suntan for 15-20 minutes at midday when the Sun is close zenith, exposing as much skin as possible; you will never burn in this amount of time, and for a fair-skinned person, your body will produce close to 50000 IU---the darker the skin, the longer you need to stay, but 30 minutes should be the maximum in order to not burn.

Mid-afternoon, around 14:00

  1. Large glass of the green drink (optional chlorella)
  2. Pinch of salt

Late-afternoon, around 16:00

  1. Large glass of green drink (optional chlorella)
  2. Small glass of wild berry-coconut milk smoothie

Dinner, around 18:30 or 19:00

  1. Large glass of green drink and or plain alkaline water 30 minutes before eating.
  2. Huge salad of dark greens with olive oil/lemon juice dressing: can be romaine or any other kind of dark green lettuce, rocket, spinach, or mesclun (mixed baby greens), with 1 red pepper, 1 small cucumber, soaked almonds, walnuts and brazil nuts (5 or 6 each is plenty, but you can have as many as you want). Optional: a couple of soft boiled eggs (if you eat eggs) or high quality smoked salmon (if you eat fish).
  3. Supplements: krill oil, krill IQ, ubiquinol, astaxanthin, vitamin K2.

Notes:

  • The green drink is the most important element in this healing protocol and this is why there is about 2 litres of it per day. Its main purpose is to alkalise tissues and pull out accumulated acid throughout the body, while providing plenty of minerals, phytonutrients, and enzymes, and lots of chlorophyl for building healthy blood cells. An alkaline terrain is the best way to prevent any pathogenic microforms (viruses, bacteria, yeasts, funguses and moulds) from surviving, let alone thriving as they do in the vast majority of people.
  • Fasting until about midday allows the body to really take advantage of its natural cleansing cycle from the time we wake up until the early afternoon without feeling overly hungry or deprived. Eating lightly at noon and mid-afternoon, providing mostly calories from coconut oil, is perfect to give the body enough fuel to function well without hunger and at the same time keep blood sugar and insulin super low. The single evening meal is plentiful, filling and satisfying, proving tons of chlorophyl, minerals, enzymes, phytonutrients, as well as excellent proteins and fats for nourishing the body and rebuilding cells and tissues during the night.
  • The liquid silicic acid is for rebuilding and maintaining healthy and supple cartilage and conjunctive tissues, healthy skin, nails and hair. It should be taken for about 3 months every 6 months (3 months on, 3 months off).
  • The magnesium chloride is an amazing all around health tonic and cure-all. It can be taken indefinitely or intermittently, but magnesium is water soluble and so we need it every day.
  • The aloe vera helps dissolve the hardened undigested proteins and waste stuck on the walls of the intestines, and the psyllium husks and chia seeds very effectively pull these toxins out with the stools.
  • The multi is for extra vitamins, minerals and enzymes; vitamin D3 is the most important supplement as it is essential for health, but almost everyone is deficient in it; krill oil is the best source of essential omega 3 fats, ubiquinol is essential for energy production in every single cell in the body but our production of it drops after the age of 35; astaxanthin is the most powerful anti-oxident and excellent for energy, vitality, physical endurance and youthfulness; and vitamin K2 is essential for strong, healthy bones, but it is hard to come by in our diets.
Read More

Six eggs per day for six days: cholesterol?

In What about cholesterol we saw how important cholesterol is for so many essential bodily functions and in so many important ways, that there should never have been a shadow of a doubt in anyone's mind that cholesterol is anything but essential and vital to our health and our life. And that, therefore, it is ridiculous to even have to say that cholesterol is good for us. However, it is more than completely absurd, non-sensical, and outright dangerous to claim that it is bad for us. Let me assume you are now well convinced of this.There is something we didn't go into that relates to the fact that we've been told---and continue to be told---that we should minimise our intake of dietary cholesterol. The crazy thing about that recommendation is that the amount needed by the body of this vital substance depends solely on the body's needs for it. And thus, the normally functioning liver, supplied with adequate amounts of the essential building blocks, produces cholesterol in the amount that is necessary for proper bodily function---whatever that amount happens to be at a particular time. What this means is that in a healthy individual, the amount of cholesterol you eat should not really affect the amount of cholesterol in the blood, estimated by the concentration of the lipoproteins that transport it to and from tissues.Even though this obvious consequence of considering the body's physiological function should just be accepted as a plain fact, unfortunately, most people---including health professionals---don't. We continue to believe that cholesterol is bad, and we continue to try to minimise dietary cholesterol in order to lower lipoprotein concentrations, completely ignoring the fact that cholesterol and lipoprotein production is an exceedingly refined and well regulated mechanism that responds directly to the body's needs.It is certainly possible that if dietary cholesterol intake decreases, the liver produces more, and if dietary cholesterol intake increases, then the liver produces less; to what extent certainly depends on the physiological circumstances, and specific needs for cholesterol depend on many factors, all related to the state of the body. But it is pretty well established that the body produces more or less the same amount of cholesterol regardless of the dietary cholesterol intake because it much prefers to use the kind of cholesterol the liver produces, which is free or un-esterified cholesterol, rather than having to de-esterify the dietary cholesterol that comes primarily as cholesterol ester. Therefore, much of the dietary cholesterol is used in bile and excreted through the intestines.For a lot more details, you can check out Peter Attia's essential points to remember on his series The straight dope on cholesterol, even if I don't really agree with the points linking LDL with atherosclerosis, simply because lipoprotein concentration, particle number, size distribution and everything else are all secondary or even further removed consequences of other dietary and metabolic factors upstream. In fact, I believe we should not even have started measuring lipoprotein concentrations and cholesterol in the first place. What we should have always focused on are uric acid levels and tracers of inflammation. And on another note, Peter is categorical that dietary cholesterol is not absorbed and all excreted. However, a couple of review papers I read about lipid absorption state that about 50% of intestinal cholesterol is, in fact, absorbed. The truth is that it is almost certainly dependent on a whole slew of factors and that, as for all things, the body absorbs and excretes in accord with its needs.A viral infection, for example, will generally lead to the increase of lipoprotein concentration because these are the molecules that can most effectively gobble up and destroy viruses. Dehydration leads to a scarcity of water at the cellular level. As a consequence, each cell's survival relies on producing more cholesterol in order to more effectively seal in the precious water it depends on for life that appears to be so scarce. Hence, dehydration also leads to higher cholesterol. A diet high in sugar---simple and starchy carbohydrates---naturally leads to a much greater amount of damage to cells and tissues throughout the body, but especially to the blood vessels themselves, from the highly damaging presence of insulin, the result of glycation of proteins and fats by higher concentrations of circulating glucose, and several other related factors. To repair the damaged cells, cholesterol is needed, and thus, in this case also, lipoprotein concentrations rise accordingly.Although the fact that the amount of dietary cholesterol does not affect blood lipoprotein concentrations much is not debated by people in-the-know about issues pertaining to cholesterol, I just wanted to see this for myself what would happen. So, I devised a simple self-experiment: compare the lipoprotein concentrations in my blood when following my low-card, high-fat, high-nutrient diet, to those after eating 6 eggs per day for 6 days in a row, where I basically just added to my diet more eggs, usually raw in smoothies. That's a lot of eggs... But before I present the results, I think it's important to go through a few numbers relevant to this discussion.

lotsofeggs

Eggs: An average organic egg of 50 g supplies 70 calories, and contains 5 g of fat (all in the yolk), 6 g of protein (all in the egg white), less than 0.5 g of carbohydrates and 215 mg of cholesterol. This means that 6 eggs supply a total of 1300 mg of cholesterol. For me, 6 eggs per day is 3 times my usual consumption of 2 eggs per day on average---a 300% increase.Blood volume: The blood in our body accounts for about 7% of its mass (Ref). For a weight of 100 kg, there is 7 kg of blood (about 7 litres); if you weight 50 kg, then there is 3.5 kg of blood or about 3.5 litres. And therefore, for a 57-58 kg person like me, this makes almost exactly 4 kg, and thus about 4 litres or 40 decilitres.Lipoproteins: Cholesterol is not water-soluble, and thus has to be transported by lipoproteins. Different lipoproteins carry a different amount of cholesterol. The bulk of it, however, is found in LDL and HDL molecules. The percentage of cholesterol by weight in LDL is about 40%, and in HDL it is between 20 and 35% (Ref). To keep our calculation simple, we'll take this to mean that LDL is half cholesterol by weight, andHDL is one quarter cholesterol.Here are the results of the blood tests from December 16 and 22, 2011, both taken in the late afternoon after nearly 24 hours of fasting (I do this every week, so it was nothing unusual). And please don't worry about the boldface: it appears automatically if the numbers are not in the "recommended" range, which for cholesterol is below 200 and for glucose 65-110 mg/dL. And don't worry about the spelling: it's spanish because I live in Spain.

Now, looking at the results, can you guess which one is which: which is the result of the blood test before one week of 6 eggs per day, and which one is after?The answer is that the first table is from the blood test done on Dec 16, and the second table is from the blood test done on Dec 22:After one week of eating 6 eggs per day, the LDL decreased from 110 to 95 mg/dL, the HDL increased from 106 to 112 mg/dL, the "total cholesterol" decreased from 224 to 213, and the triglycerides decreased from 41 to 29 mg/dL.About the lipoprotein concentrations, you may recall from this graph I linked to in my first post on cholesterol, and in which was compiled all the available data found by its author, that included mortality rates and what is referred to as "total cholesterol" (but is in fact total lipoproteins), the ideal range for which is labelled "Colesterol total" in the above test results is 200-240 mg/dL, and the minimum all-cause mortality is found for concentrations of 220 mg/dL. That's right where my numbers happen to be.As for the glucose, well, you already know I try to keep it as low as possible, and by the way, I had no signs of hypoglycemia when my blood glucose was 60 mg/dL. In fact, I never do, even during three-day fasts, cycling to and from work, and doing resistance training at lunchtime. This demonstrates that the state of hypoglycemia can not be defined by a fixed threshold of glucose concentration below which we are considered to be in that state, but rather is based upon the individual's metabolic function. This should be obvious since some people feel the consequence of hypoglycemia quite regularly and at glucose levels that would be exceptionally high for others, who on the contrary never feel them, simply because their metabolism has been trained to use fats for the body's energy needs efficiently, and in fact, almost exclusively---to function in ketosis---as is my case. I plan to revisit this topic in greater detail in the future. But for now, let's come back to the blood test results.Firstly, we see that the sum of LDL and HDL compared to the "total cholesterol" is 216 vs. 224 (Dec 16) and 207 vs. 213 (Dec 22). This tells us that the VLDL (very low density lipoproteins) and CM (chylomicrons) together account for 8 mg/dL on Dec 16, and 6 mg/dL on Dec 22. They are, and we'll not discuss these lipoproteins any further in this post.Secondly, we note that the small difference in the very low concentrations of triglycerides (three fatty acids attached to a glycerol backbone), considered to be "normal" up to 150 mg/dL, mirrors the small difference in the lipoproteins that carry most of the triglycerides: the CM (90% triglycerides) and VLDL (62% triglycerides). Low triglyceride levels with low glucose and insulin levels equate to efficient metabolic use of fats.And thirdly, we find that for 4 litres of blood, if we assume simple rounded figures of 100 mg/dL of LDL and 100 mg/dL of HDL, the total amount of cholesterol being carried around in the bloodstream is about 3000 mg: 40 dL*(50%*100 mg/dL + 25%*100 mg/dL). This is just 3 grams in the entire blood supply for a body weight of 58 kg! And an additional 1300 mg of cholesterol per day---almost half of the cholesterol in the bloodstream---from eating 6 eggs, and this for 6 consecutive days that supplied a total of 7800 mg of cholesterol, did not affect the lipoprotein concentration.This leads us back to the hypothesis presented in the first paragraphs: the amount of cholesterol you eat should not really affect the amount of cholesterol in the blood. And although a quick experiment on a single person is far from being definitive proof of anything, this one clearly indicates, at least for me, that increasing intake of dietary cholesterol by an amount that is close to half of the total cholesterol circulating in the bloodstream, and doing this each day for 6 days in a row, does not raise lipoprotein concentrations (in this case, they went down slightly) when comparing the values measured at the same time in the late afternoon after a 24 hour fast once at the start of the week and 7 days later.Furthermore, based on the sensible assumption that cholesterol synthesis by the liver is a response to the body's needs, but also ability to manufacture it, if absorption of intestinal cholesterol is not nil but varies depending on the body's needs, then supplying more dietary cholesterol may help ease the requirements on the liver for manufacturing the quantities needed. Therefore, this "help" to the liver can only be viewed as favourable considering the extreme importance of this organ for good health. It could also be that most or even all the additional dietary cholesterol was simply excreted in the stools. But in any case, it is absolutely certain that eating this huge amount of cholesterol every day did not affect lipoprotein concentrations in the blood after the period of fasting.What I would like to do is to evaluate dietary cholesterol absorption on me, a 40-year old man in excellent health, by adopting an extreme diet of eating only eggs and water (this will remove the influence of other foods and nutrients and therefore reduce significantly the number of variables that can influence cholesterol synthesis and absorption), and take minimal blood samples at regular time intervals such as every hour or every couple of hours. By evaluating the changes in cholesterol transporters we would be able to estimate how much is absorbed because we know that lipids from the intestines are transported to the blood mostly by CM and VLDL, whereas HDL and LDL are mostly responsible for transport to and from the liver.In any case, as we have seen here, but also as I mentioned in my opening sentences that we have known for a rather long time, dietary cholesterol does not influence blood cholesterol much. So please, when you hear someone say that we should avoid eating too much cholesterol because they have "high cholesterol", you don't need to say anything if you don't want to, but remember at least this: cholesterol is so important and so good for us, that the liver and cells themselves will always do everything to supply the all the cholesterol that is needed, whatever that is at a particular time, and no matter how little or how much we get from our food. And maybe it is even the case that eating more cholesterol actually helps the liver and cells meet the body's continuous demands throughout the day and night of this vital substance.

Read More

Healthy and lucid from childhood to old age

So you've been around for 70 years, and you're still well enough to read this. Have you actually made it past 75, 80 or even 85? This is really great! Through a combination of different factors, various reasons, personal habits and choices, you have made this far.Maybe because of your genetic makeup: Your parents and grand-parents all lived well into their 80's or 90's by following a kind of innate, traditional wisdom based on the understanding that we really are what we eat, in a very real sense, and you've done more or less the same, following in their footsteps.Maybe because you have always been moderate in your eating habits: You've never been overweight; you've never eaten much sweets or deserts; you've never eaten much preserved meats and canned foods; you've never drank much alcohol; you've never drank sweetened soft drinks, juice or milk---mostly just water, always paying attention not to drink too much coffee or strongly caffeinated tea.Maybe you have made it this far because you have also been moderately active throughout your life, never exercising too much or too intensely, but always quite regularly: Walking; doing light exercises for your joints (rotations of the arms for your shoulders, stretches for your neck and back, and exercises for your knees); riding a bike a couple times a week in the good season, not getting off the bike but instead riding up those hills; maybe you went skiing a week or two most years; went for long walks or even hikes in the mountains during holidays; or did a little swimming in the sea or in lakes when the occasion presented itself.The golden middle, as my grand-father called it: everything is moderation. And he almost made it to 90 years of age! But no matter what the reason is, it is truly wonderful that you have indeed made it this far. Then again, you might be young or middle aged, but interested---maybe somewhat, maybe highly, but nonetheless interested---in being healthy and lucidfor as long as possible, and hopefully well into your old age.Either way, young or old, you live in this modern world like most of us. You live in a city, you drive a car, you work in an office, you fly or flew often on business trips, maybe even several times per week. You eat meat and fish; bread, potatoes, rice and pasta; fruits and vegetables, all from the supermarket. And so you have, throughout your life, been continuously exposed to increasing amounts of chemicals, heavy metals and various other toxins in our environment, most of which have been accumulating in your tissues. You live in the modern world like most of us, and so you have taken medication on various occasions during your life: antibiotics a few times, maybe some pain killers, maybe some sleeping pills, maybe simple anti-histamines when you had a cold. Maybe you are and have even been taking medication on a daily basis for some "minor" but "chronic" condition.You live in this modern world and so you have been told to drink plenty of fluids and that salt is bad and should be avoided. You've been told that fat in general, but especially saturated fats and cholesterol, are bad because they cause heart disease: they cause your arteries to clog up with fatty plaques that eventually block them to give you a heart attack. You've been told to avoid them as much as you can, and instead to consume polyunsaturated vegetable oils, plenty of whole grains and cereal products, legumes, plenty of fruits and vegetables, and so you have done that: you have decreased or almost eliminated your intake of butter, eggs, fatty cheese, fatty yoghurt, red meat---never ever eating the fatty trimmings, and also of the fatty skin on chicken or fish.Consequently, you have increased your intake of morning cereal---but only sugar-free whole grain cereal like muesli; increased your intake of bread---but usually whole grain bread; increased your intake of rice---but usually brown rice; increased your intake of pasta---but usually also whole grain pasta; and increased you intake of potatoes---but never fried, only baked, steamed or boiled potatoes.Maybe your total lipoprotein levels are around 220 or 240 mg/dl, and you have been told that this is too high, and for this reason you have tried to further reduce your fat intake, and are even taking statins or other cholesterol-lowering drugs, every day, just like hundreds of millions of other people in this modern world.Unfortunately, you have not been told that you should be drinking water; not fluids in general, and that there are many reasons water, ageing and disease are intimately connected---the lack of water, that is. In addition to that, you have not been told that it is not enough to drink some water sometimes: it is essential to drink water before meals. Unfortunately, you have not been told that sodium is one of the most important minerals for health: why else would the kidneys, without which we cannot live for more than a few days, go to such great lengths to prevent its excretion in the urine, and keep it in the blood if it wasn't? But even more unfortunately, you have not been told that minerals in general, are essential for health, and that unrefined sea salt contains all naturally occurring trace minerals is proportions that closely match those of several of our bodily fluids. And that furthermore, proper bodily function depends intimately on the balance of the minerals available, and that our salt-phobic and calcium-phillic society has led to most of us becoming completely over-calcified while growing more and more deficient in the rest of the trace minerals, and in particular magnesium. The link between generalised magnesium deficiency and minerals, ageing and disease are now everywhere painfully obvious.Unfortunately---and indeed very sadly---you have not been told that cholesterol is absolutely vital for life and good health: that it forms the membrane of every single cell in your body and in that of every animal, that your entire nervous system and especially your brain are built using cholesterol and depend intimately on the availability of plenty of cholesterol, that your hormonal system relies completely on cholesterol for building hormones, and that your best defences against infectious and inflammatory pathogens are in fact the lipoproteins carrying around the precious cholesterol throughout your body. You have not been told that cholesterol is so important that it is manufactured continuously by our liver to keep up with the body's needs, and that therefore, the cholesterol we eat does not in any ways raise lipoprotein concentrations. You have not been told that in addition to cholesterol, fat is also essential for building hormones, essential for absorbing minerals from the intestines into our bloodstream, essential for the binding of these minerals into the bones and teeth, essential for energy production in every cell of our body.Furthermore, you have not been told that saturated fats like those found in animal products and coconut oil are molecularly stable, whereas unsaturated and particularly polyunsaturated oils such as those that make up all vegetable oils are molecularly unstable, some more than others, for the double bonds between carbon atoms in the chain that forms the fat molecule are weak and readily broken to permit some other unstable molecule seeking a free electron to attach in order to make the final molecular configuration stable. But that those unstable compounds are actually scavenging around for any electron to bind to, and unfortunately most of the time if not always, these free-radicals will attach themselves to healthy tissue without proper enzymatic action to guide them in the proper place and position, thus damaging our tissues.In fact, you have not been told that all large studies that have been conducted to evaluate the "health-promoting" properties of polyunsaturated fats have not only failed to do so, but instead have shown that the more polyunsaturated oils we consume, the more atherosclerotic plaques develop in our arteries, and therefore the more likely we are to suffer a heart attack or stroke. And that on the contrary, the moresaturated fats we consume, the less plaques we have, and consequently, the less likely we are to have a heart attack or a stroke (see any of the books about cholesterol in Further readings).You have not been told, that for millions of years our species has evolved consuming most of its calories in the form of saturated fats from meat and animal products---in some cases exclusively from these, from coconut and palm oil (where these grow), and to a much lesser extent from polyunsaturated fats, and this only in whole foods such as fish, nuts and seeds---never concentrated into vegetable oils.Unfortunately---and indeed very sadly---you have not been told that we were never meant to eat simple or starchy carbohydrates: that eating such carbohydrates always triggers the pancreas to secrete insulin in order to clear the bloodstream of the damaging glucose in circulation, that chronically elevated glucose levels lead to chronically elevated insulin levels that in turn lead to insulin resistance---first in our muscles, then in our liver, and finally in our fat cells---which leads to type II diabetes, to heart disease from the buildup of plaque in the coronary arteries and vessels, and to Alzheimer's and cognitive degradation from the buildup of plaque in the cerebral arteries and vessels.Unfortunately---and indeed very sadly---you have not been told and have not considered that all the multitude of chemicals and heavy metals that we are exposed to in the medications we take, in the air we breathe, in the water we drink, in the food we eat, in the soaps and shampoos we use, and in the household products we employ to keep our house sparkling clean and bacteria-free, accumulate in our bodies. They accumulate in our fat cells, in our tissues, in our organs, in our brains. They burden, disrupt and damage our digestive system, our immune system, our hormonal system, our organs, tissues and cells. Sometimes they reach such concentrations that we become gravely ill, but none of the doctors we visit in seeking a solution and relief understand why. Most often, however, we don't get gravely ill but instead start developing different kinds of little problems: we get colds more often and take longer to recover, we get mild but regular digestive upsets that we can't explain and that seem to get worse with time, we get headaches and have trouble sleeping, we feel depressed, tired, alone, helpless, not acutely but enough to disturb us enough that we notice it.Finally, and maybe most importantly, you have not been told how truly essential vitamin B12 really is, but how, for a variety of different reasons, blood concentrations B12 decrease with age, and eventually dwindle to very low levels. That B12 is essential most crucially to preserve the myelin sheath that covers all of our nerves healthy, and thus crucially important for everything that takes place throughout the nervous system, which means, everything in the body and brain. Levels of B12 should never go below 450 pg/ml, and ideally should be maintained at 800 pg/ml throughout life, from childhood to old age hood.Can we do anything about all this?The most fundamental point to understand is that everything about your health depends on the state of health of your digestive system. All absorption of nutrients and elimination of waste happens in the digestive system. Since our health depends on proper absorption and efficient elimination, the digestive system should be our first as well as our main concern.The first step is to rebuild and establish a healthy intestinal flora of beneficial bacteria (breakdown and absorption), and at the same time begin to detoxify the body and clean out the intestines (elimination). This is done by taking high quality probiotics to supply beneficial bacteria on a daily basis, high quality chlorella to both supply a lot of micronutrients and pull out heavy metals, and water-soluble fibre like psyllium husks to clean out the intestines by pushing out toxins and waste products. If you are not already taking these, read Probiotics, chlorella and psyllium husks.The second step is by far the most important, and in fact, crucial dietary change necessary to achieve optimal metabolic health. It is to eliminate simple and starchy carbohydrates from you diet, and replace them with more raw vegetables---especially green and leafy salads and colourful vegetables such as red and yellow peppers, more nuts and seeds---especially raw and soaked, more good and efficiently absorbed protein---especially eggs, fish and raw cheeses, and much more saturated fats---especially coconut oil (at least 3 tablespoons per day) and butter. Doing this is essential for the systemic detoxification, rebuilding and then maintaining a healthy digestive system. Everything should be organic: you obviously don't want to be adding to your toxic load while trying to detoxify.And the third step is to supplement our now-excellent, health-promoting diet with a few essential and very important nutrients that are, for most of us, difficult to obtain. The only such supplements that I believe to be essential, and that my family and I take daily, are: Vitamin B12 and vitamin D3---the most important supplements to take for overall health, but in which we are almost all deficient; Krill oil---a high-quality, animal-based omega-3 fat with its own natural anti-oxidants, highly absorbable, and particularly important for proper brain function; Ubiquinol---the reduced and thus useable form of coenzyme Q10, critical for cellular energy production, and a powerful lipid-soluble anti-oxidant that protects our cells from oxidative damage, but both of whose synthesis as CoQ10 and conversion from CoQ10 to ubiquinol drop dramatically after about age 30-40; Vitamin K2---essential for healthy bones but very hard to get other than from fermented foods, which we typically eat little of.In addition to these, we usually always take Astaxanthin and turmeric---very powerful antioxidants with amazing general and specific anti-ageing health benefits, and also sometimes take a whole-foods-multi---basically dehydrated vegetables and berries made into a powder and compressed into a pill for extra micronutrients. (You can read about all of these supplements on Wikipedia or any other page you will find by doing an internet search.)I tend to buy our supplements from Dr Joseph Mercola, (whose website also provides a lot of info about these and other supplements, as well as about a multitude of other health-related issues and conditions), because I trust that his are among if not the best on the market: there's really no point in buying cheap supplements at the pharmacy, and risking doing yourself more harm than good, as would happen with a rancid omega-3 supplement, or a synthetic Vitamin D, for example.Staying healthy and lucid is, in reality, quite easy and simple. Unfortunately, most of us, including, and maybe especially our medical doctors, just don't know how. And so, medical diagnostic and high-tech treatment technologies continue to improve and develop, and medical expenditures continue to rise throughout the modern world, but we are sicker than ever: more obesity, more diabetes, more strokes, more heart attacks, more cancers, more Alzheimer's, more leaky guts, more ulcers, more liver failures, more kidney failures, and on and on. There is more disease, more pain, more suffering and more premature deaths. And all of it is completely unnecessary and avoidable by such simple and inexpensive means as those outlined herein. The only critical point is that onlyyoucan do it; nobody else can do it for you.

Read More

Probiotics, chlorella and psyllium husks

Essential for building and maintaining a healthy digestive system, it is best to take probiotics and chlorella on an empty stomach, once to several times per day, to maximise the bacterial flora replenishing from the probiotics, and the prebiotic as well as cleansing and heavy metal chelating effects of the chlorella. This way, there is minimal potential damage to the probiotics by acidic gastric juices secreted into the stomach when protein is present.Psyllium are also good to take on an empty stomach or with foods that are not mineral-rich (as in a coconut milk pudding, for example), in order to maximise their intestinal cleaning and minimise their possible interference with mineral absorption. It is most important for the psyllium husks to be completely saturated with water before taking them to avoid causing cork-like condensations of psyllium husks in the gut.All supplements should be of the highest quality. I buy probiotics from Prescript-Assist, chlorella from Dr. Mercola, and psyllium husks either whole or powdered but organically grown without pesticides or herbicides from Frontier.If you have not taken these supplements, then your digestive system will be in dire need of them. It would be best, in addition to the morning probiotics, chlorella and psyllium husks, to take probiotics and chlorella with 500 ml about 30-45 minutes before eating at lunchtime, and again before dinner. After even 1 week, you will feel much better. After about 1 month, you can reduce the frequency to twice per day, and eventually you can take your probiotic only in the morning.For the chlorella, it's important to not take too much at first because the detox could be too fast, and this would stress the body unnecessarily and make you feel unwell as well as make your stools runny. Once you have past the initial detox phase, you can and should take chlorella as often and as much as you want depending both on the circumstances and on your needs.I, for example, sometimes take at 15 little pellets (3 grams) per day in two or three doses, 30 minutes before meals. But on my weekly, 24-hour fast, (usually on Mondays), during which I only take water and herbal teas, unrefined sea salt and chlorella from Sunday evening after dinner, until Monday evening before dinner, I take at least 30 little pellets (6 grams) of chlorella over the course of the day, and sometimes more. This not only gives the body easily digestible essential amino acids, but also supplies a lot of essential minerals, chlorophyl, and detox power, which is, after all, the main purpose of the fast.The quantity of the psyllium husks should be 1 teaspoon per day for the first week. Then 2 teaspoons, and eventually 3 teaspoons per day, but not more: it's not necessary and this much fibre may stress your digestive system, which is obviously not what you are trying to do. After a month, you should reduce the quantity of psyllium to one teaspoon per day, and see if you can reduce it further to every other day, depending on the effects on your digestion. I personally usually take 1 teaspoon almost every day to maintain perfect intestinal transit and stools (regular, easy to pass, and almost nothing to wipe). In any case, you can not do yourself harm by taking psyllium husks with plenty of water on a regular basis (unless you are allergic to it, which is very rare); instead it will be of great benefit.The best way to know how much and how often you need to take is by carefully monitoring the smell of your breath---it should be fresh and odourless throughout the day and night; the smell of your sweat---it should also be light, not acidic smelling, and basically odourless, even if you don't shower for a couple of days without using deodorant or perfume; and finally, the regularity, consistency and smell of your solid eliminations---they should not be too hard nor too soft, voluminous, easy to pass, and easy to wipe. Ideal stools pass easily and do not need any wiping. This is what we should strive for by making adjustment to our water intake, cooked versus raw food intake, psyllium and vegetable fibre intake, paying particular attention to the timing of these with respect to one another.Doing these simple things you will very quickly feel much better, and also begin to notice and understand much more about the natural detox functions of your own body, with its daily cycles as well as with its particularities. In physiological function, we are all basically the same with small individual differences that must be first identified and then tended to with care, patience and attention, being especially mindful of their evolution in time and depending on the changing circumstances. Only we ourselves can really learn how to do this, and so we must if we want to achieve and then maintain optimal health throughout our life, as we age and mature.

Read More

When you eliminate insulin-stimulating carbohydrates

Eliminating insulin-stimulating carbohydrates will have a profound effect on your health. What are insulin-stimualing carbohydrates? All simple sugars: white sugar, brown sugar, unrefined sugar, dehydrated cane sugar juice, coconut sugar, honey, molasses, corn syrup, agave syrup, fructose, and also fruit whose calories are typically half glucose half fructose. And all starchy carbohydrates: potatoes, rice, bread, pasta, all grain products and whole grains alike. That's quite a lot of things we tend to eat, isn't it? But the truth is that We were never meant to eat simple or starchy carbohydrates in the first place. And the fact that we do is enough to explain why we are all so fat and so sick.The first and most noticeable immediate effect will be deep detoxification by starving off and killing of the colonies of pathogenic bacteria and fungi in the intestines, all of which live off simple sugars supplied either by your eating of refined carbohydrates or the breakdown of starches to glucose. All these bad bacteria will starve and die, which will temporarily increase the toxins that need to be eliminated from the body. For this reason it is very important to drink plenty of water (see Water, ageing and disease), on an empty stomach, and preferably about 30 minutes before meals (see Why we should drink water before meals) together with probiotics and chlorella supplements, as well as plenty of unrefined sea or rock salt because the body excretes more sodium when it is burning fat. You may very well not feel so good for the first few days or maybe even the first couple of weeks depending on the state of toxicity of your body and its ability to detoxify. But once past this initial detox phase, you will feel great---really great.The second most noticeable effect will be the transition from using glucose as the primary cellular fuel to using fat instead. As glucose concentrations will fall, so will insulin concentrations. At the beginning, your body is unable to burn fat because it hasn't had to for a long time. Instead, it will try to manufacture more glucose in the liver to sustain its energy needs. When this source runs dry, the body, now desperate for sugar because still unable to tap into the plentiful fat stores throughout, will turn to muscle tissue, and break down the proteins to manufacture glucose. This is what insulin resistance, even in the mildest of forms, leads to: more fat storage, less fat burning, and breakdown of muscle tissue whenever glucose concentrations drop. What varies depending on the level of insulin resistance is the pace at which fat is stored, the relative difficulty with which fat is burnt, and the speed at which muscle tissue is broken down.Fortunately, the body is truly amazing, and although you will have periods, some short and some longer, during which you feel weak, tired and sleepy, within days the metabolism will begin to make the switch to fat-burning as the main source of cellular fuel and energy. Then, you will start to melt all of the excess fat that has been accumulating both on the surface of your body (the visible bulges under your skin), as well as the fat that has been accumulating internally between and around all of your organs, especially in the abdominal cavity, but also around tendons and ligaments, and even within the tissues or your liver and heart, and in between muscle fibres---we all know the difference between lean meat and fatty meat, and will have had or at least heard of the french delicatessen "foie gras" (fat liver).I, for example, a lean 35 year-old athlete who had always exercised extensively through a typically quite intense training programme in endurance, speed and strength since I was 12 (first running, then cycling, then both), with a peak during the university years, when I competed quite seriously first in cycling (road), then in duathlon (run, bike, run), and then cycling off-road, and another during my PhD, when I trained and competed running, with the most worthy achievements being the running of the Mont Saint-Michel marathon in 2:58, but training more or less steadily throughout my life, found the transition from glucose to fat-burning very quick and easy. That was about 4 years ago, and small details of momentary sensations tend to slip out of memory over such periods, but of course I had a few headaches and foul smelling stools. But within days, I had more energy, more endurance and better, longer-sustained concentration, and it's been getting better ever since! None of my body measurements changed significantly: I was always pretty lean and my clothes didn't fit differently. However, I lost 4 kilos (9 pounds): my weight went from of 61 to 57 kg, and has remained thus ever since, without any effort, and without hunger. Consequently, most of these 4 kg were surely in part sub-cutaneous, but necessarily in great part internal fat stores: intra-abdominal (between organs), visceral (within organs like the liver and heart), and intra-muscular.Averagely overweight people typically lose a lot more fat than this. Like a friend who followed my advice closely, and lost more than 25 kilos (55 pounds) in about a year, without hunger. And she is still melting fat reserves that had been accumulating and that she had been carrying around for years. Beyond a certain threshold, as the body gets closer to its ideal weight and composition, the fat reserves naturally begin to melt a little slower every day. Nonetheless, it will continue until there is only the necessary reserves for optimal metabolic function---and that's not very much fat.There are thousands of examples such as this one, but this is not the point I want to make. The loss of fat is a trivial consequence of the body's hormonal and metabolic recovery. It is everything else that happens to the glands, the hormones, the brain, the digestive system, the immune system, the cardio-vascular system, and all other systems, allowing more efficiently and better functioning, that is really important. You should always keep that in mind: it is not about getting thin, it is about getting healthy.When fat-burning kicks in and especially when it kicks into high gear, all the toxins---heavy metals like mercury and chemicals of various kinds---that have been accumulating in your tissues will be released as the fat cells open up to free these energy reserves. It is crucial to drink a lot of water, especially first thing in the morning, to take plenty of unrefined sea salt to balance the increased need for and usage of electrolytes in elimination through the urine, and take plenty of chlorella throughout the day for it to bind to the metals and toxins, and excrete them from the body.The third most noticeable effect of eliminating insulin-stimuating carbohydrates will be the gradual extraction and excretion of uric acid from all the soft tissues and organs. Since metabolising simple and starchy carbohydrates leads to acid formation, and that our kidneys---our primary blood filtration and thus acid-removing organ---never developed to handle the huge quantities of acid produced by a diet based on carbohydrates, it tries to filter it out of the blood, but simply cannot take it all out. To make matters worse, 90% of us are chronically dehydrated (see Water, ageing and disease). This not only prevents the proper dilution of the uric acid from the blood and its transfer to the urine, but it also severally stresses the kidneys that are continuously trying to filter this and other metabolic wastes from the poorly hydrated, and thus excessively thick and viscous blood, extracting what liquid they can from it to actually produce enough urine to excrete the wastes out of the body.To make matter even worse, for years we have been told to avoid salt, and supplement with calcium. As a consequence, 90% of us are not only deficient in most essential minerals (see Minerals, bones, calcium and heart attacks), but also in sodium---probably the most important element for proper health and kidney function, and on the contrary, we are totally over-calcified. All of this makes both calcium and acid accumulate not just in our kidneys to the point of forming "stones" (about 80% of them are calcium deposits with crystallised uric acid seeds and 10% pure uric acid), but everywhere in our body, making all tissues gradually stiffer, from arteries and veins to muscles, tendons and ligaments. What a nightmare! And what a sad state of affairs it is when we realise that this is a highly accurate description of what happens to most of us, day after day, and year after year until our untimely and inevitably premature death.The last straw is that we are all terribly deficient in magnesium, scarcely found in our soils and therefore in our foods, and this leads to severe problems over time. If you didn't know or need convincing, read Why you should start taking magnesium today.What do we eat when we eliminate what currently constitutes between 50 and 70 percent of our daily calories? I've written up some general guidelines with brief explanations in What to eat: Four basic rules. And here are some examples of daily meal plans: A simple meal plan for my friend Cristian and Vibrant health and long life.

Read More

We were never meant to eat simple or starchy carbohydrates

The transition between hunting-gathering and farming took place over a period of about 1000 years between 11000 and 10000 years ago in the Fertile Crescent, a crescent-like shape of land that stretches across parts of Israel, Lebanon, Jordan, Syria, Iran and Iraq. The first people to settle were hunter-gatherers that built villages in places they found provided enough food to sustain them without having to move around. At first, these were "seasonal" villages located in different areas, to which they returned in a seasonal cycle. Finding ways to store the grain from the large seeded grasses like barley and emmer wheat growing wild but in large quantities, allowed them to settle permanently. This most likely led to a rapid growth of the population, that was matched with a proportionally rapid growth in the demand for food. The response was the development of agriculture.The gradual decimation of the wild game over the course of about 2000 years led to the domestication of the most easily domesticable, large mammals to inhabit the region, the sheep, goat and pig, all about 8000 years ago, followed by the cow about 6000 years ago. It is very interesting and important to point out, from an anthropological point of view, that the Fertile Crescent---the seat of civilisation---is the region in the world where there were the greatest number of large-seeded grasses, as well as the greatest number of large, easily domesticable animals, by far.The cultivation of cereal crops allowed our ancestors, some 10000 years ago, to have, for the first time in our evolutionary history, enough spare time to develop tools and technologies, as well as arts and music. For the first time in evolutionary history, a handful of people could sow, tend to, and harvest enough cereal grain to feed hundreds or even thousands of people who were, therefore, free to do a multitude of other things. Without agriculture and this shift from the hunter-gatherer lifestyle of spending most of our waking hours hunting and rummaging around looking for food, we would not have developed much of anything because we simply never would have had the time to do so.Now, although it is well known to most anthropologists, it is not a well appreciated fact that the cultivation and eating of cereal crops as an important source of calories, is possibly the most negatively impacting evolutionary mistake to have been made in regards to the health and robustness of our species as a whole. There was, indeed, plenty of free time, and we did develop technologies extremely quickly considering how slowly things had changed before then. But the price to pay was high.Within as little as one or two generations, our powerful stature shrank markedly, our strong teeth rotted, our massive bones became thin and brittle, our thick hair grew thin and fell out at an early age. In fact, evidence indicates that while our hunter-gatherer ancestors were tall, strong, robust, with hard teeth and bones, and apparently healthy to their death---usually of a violent nature instead of progressive degradation through "ageing" as later became the norm, our oldest cereal-eating ancestors in contrast, were the exact opposite: small, weak, fragile, with rotten teeth, and advanced osteoporosis in their bones at the time of their death in their early 50's. (For a lot more details about all the points discussed up to here, I strongly recommend Jared Diamond's fascinating books: The Third Chimpanzee; Guns, Germs and Steel; and Collapse).Today, at the beginning of the 21st century some 10000 years later, we know exactly why we were never meant to consume carbohydrates on a regular basis, let alone in large quantities as we do today, such that they provide a significant part of our daily calories---sometimes even the majority! We know exactly why because we have pretty clearly understood the primary effect of phytic acids or phytates, the importance of dietary fats, and the insulin mechanism.Phytates are compounds that exist in all grains and legumes---where they are found in the greatest concentration---as well as in all nuts and seeds. Some animals like rats, for example, have evolved the necessary digestive mechanisms to break down phytates, but humans have not. The consequence is these bind to minerals in the gut and in so doing prevent their absorption into the bloodstream. The regular consumption of grains and legumes---and we believe that many of our first agrarian ancestors lived almost exclusively from grains---leads to severe mineral deficiencies that result in demineralisation of the teeth and bones, exactly as is seen in the remains of these ancestors.Moreover, any diet consisting primarily of grains (and legumes) as was theirs, will also inevitably be extremely deficient in fat, that is now know to be essential for the proper function of every cell, tissue and organ in the body (especially the brain), but also crucial in the absorption of minerals. So, the combination of a high concentration of phytates together with an almost complete absence of fat, made for an extremely effective demineralisation, which is indeed seen in the smaller statures, weakened bones and teeth, and considerably shortened lifespan of our agrarian ancestors. This obviously still applies today: the more phytates, the faster the demineralisation; and the less fat; the faster the demineralisation.Finally, insulin is a hormone secreted by the pancreas. There is always a certain concentration of glucose in the blood, and there is also always a certain concentration of insulin. If there isn't a major metabolic disorder, then the higher the glucose concentration, the higher the insulin concentration. And conversely, the lower the glucose concentration, the lower the insulin concentration. But since the body is programmed to always keep glucose concentrations to a minimum, as soon as there is a simple carbohydrate in our mouth, insulin is secreted into the bloodstream. As the glucose---either from the simple carbohydrates or from the breakdown of starches---enters the bloodstream through the intestinal wall, and as its concentration continues to rise, the pancreas continues to secrete insulin to match the concentration of glucose; but always a little more, just to be on the safe side.Why? If glucose were good for us, then why should we have this highly sensitive mechanism to always try to get rid of it?Insulin's primary role is storage of "excess" nutrients, and regulation of fat storage and fat burning: when insulin is high, there is fat storage; when insulin is low, there is fat burning. It's very simple. This, in turn, means that insulin is the primary regulator of energy balance, and therefore of metabolism. From an evolutionary perspective, the importance of insulin is perfectly clear. Firstly, it is a mechanism that is common to almost if not all living creatures, from the simplest to the most complex, because all living creatures depend for their survival on a mechanism that allows them to store nutrients when they are available for consumption but not needed by their metabolism, in order to live through periods where food is not available. This is why the role of insulin is so fundamental and why it is a master hormone around which most others adjust themselves. But when glucose levels are higher than a minimum functional threshold, what insulin is trying to do, in fact, is to clear away the glucose circulating in our bloodstream.Why? Because the body simply does not want large amounts of glucose in circulation. In fact, it wants blood glucose to be low, very low, as low as possible. And beyond this very low threshold of glucose concentration between 60 and 80 mg/dl, it always tries to store it away, to clear it from the bloodstream, to make it go away. It tries to store as much as possible in the muscles and the liver as glycogen, and converts the rest to fat stored away in fat cells. That the body does not want glucose in circulation is most certainly related to the fact that the insulin mechanism even exists: very small amounts of glucose in the bloodstream is essential for life, but large amounts of glucose in the bloodstream is toxic. And all simple and starchy carbohydrates stimulate the secretion of insulin from the pancreas.Keep in mind that the presence of insulin promotes the storage of glucose, but also of proteins as well as fats. Once more, its role is to store away and deplete the "excess" nutrients in the bloodstream for later times of food scarcity. Once the insulin molecule has delivered its load (glucose, protein or fat) through the receptor on the cell, it can either be released back into circulation or degraded by the cell. Degradation of circulating insulin is done by the liver and kidneys, and a single molecule will circulate for about 1 hour from the time it was released into the bloodstream by the pancreas until it is broken down.It is important to add that stress stimulates the secretion of stress hormones that in turn stimulates the release from and production of glucose by the liver, just in case we need to sprint or jump on someone to save ourselves. Obviously, the presence of glucose---now not from ingested carbohydrates but from the liver itself---will trigger the secretion of insulin in exactly the same way as if we had eaten sugar. This means that stress mimics the physiological effects of a high sugar diet. And that's not good. In fact, it's pretty bad.Chronically elevated glucose levels lead to chronically elevated insulin levels. And this is much worse. Like for any kind of messenger mechanism---as is insulin, if there are too many messengers repeating the same message over and over again, very soon they are not heard well because their efforts at passing on the message becomes more like background noise. Frustrated that they are not taken seriously, the messengers seek reinforcements in numbers to be able to pass on their message more forcefully. This, however, leads to even more annoyance on the part of the listeners---the message recipients---that now start to simply ignore the message and the messengers. This process continues to gradually escalate up to the point where the terrain is completely flooded by messengers yelling the same thing, but there is no one at all that is listening because they have insulated their windows and doors, and closed them tightly shut.Here, the messengers are the insulin hormone molecules secreted by the pancreas and coursing throughout the body in our veins and arteries; the message recipients are our cells: muscle tissue, liver and fat cells; and the message itself is "Take this sugar from the bloodstream, and store it away. We don't want this stuff circulating around." The desensitisation---the not-listening---to different, progressively higher degrees with time, is called insulinresistance. Finally, the complete ignoring by the cells of the message and the messengers is called type II diabetes.Furthermore, insulin resistance---not in the muscle, liver and fats cells, but in the brain cells---clearly leads to neurological degradation identified as cognitive impairment, dementia, Alzheimer's or whatever other terms are used. Because beyond the fact that type II diabetes and Alzheimer's disease are both increasing together at an alarming rate in the US and other western countries, and beyond the fact that diabetics are at least twice as likely to develop Alzheimer's compared to non-diabetics, the basic condition of insulin resistance inevitably leads to chronically elevated glucose concentrations simply because the cells do not allow the glucose to enter. And it is well known that glucose in the blood simply and straight forwardly damages to the lining of the blood vessels, which then leads to plaque formation---the body's repair mechanism for the damaged cells underneath. Thus, as are the coronary arteries of advanced atherosclerotic heart disease sufferers (and diabetics): riddled with plaques, so are the arteries and blood vessels in the brains of Alzheimer's sufferers (and diabetics).Now, although many claim that these and other issues related to the development of Alzheimer's disease and other kinds of neurological degradation are still relatively poorly understood, as far as I'm concerned, it's all the evidence I need: Do you want the vessels supplying blood to the brain fill up with plaque in response to the damage caused by glucose circulating in the bloodstream? Do you want the coronary arteries fill up with plaque in response from the damage caused by glucose circulating in the bloodstream? I certainly don't. How could anyone?What do we need to do? Very simple: just eliminate simple and starchy carbohydrates from the diet. Concentrate on eating a lot of green vegetables, tons of green leafy salad greens; plenty of fat from coconut milk, coconut oil, nuts and seed of all kinds; and a little animal protein from eggs, raw cheese, wild fish and meat (if you chose to do so). Blood sugar will drop to its minimum, insulin will follow suit, and the body's own repair and maintenance mechanisms will clear out the plaques, repair damaged tissues, degraded unneeded scar tissues and small tumours and recycle these proteins into useful muscle tissue, and many, many more amazing things will happen to the body that it will gradually look and feel younger and stronger as time passes. Sounds too good to be true? Just try it, and you'll see for yourself. I guarantee it.

Read More

What about concentration

Concentration is a complex topic. As with many other things, because we use a single word for it, we can be tricked into believing that it is, in fact, one thing even though it is not. In addition to that, different people will likely mean different things when they use the term "concentration".For me, "concentration" means focusing attention onto something, and in the process, excluding as much as we can of everything else that is going on in the field of present experience, deeming them distractions. To concentrate on trying to hear a particular sound, for example, a very faint sound way off in the distance, implies directing our attention towards it with all our mental might. And somehow by doing this it is implied that we have to exclude everything else that is happening, and the better we can exclude everything else the more concentrated we can be.But focused attention tends to be very fast moving, spontaneously jumping from this thing to that thing to the other thing, continuously and restlessly. This happens so quickly and so continuously that most of us hardly notice it at all. Therefore concentrating requires a great deal of effort and energy. This is why it is so exhausting, and this is also why it cannot possibly be sustained for very long. In fact, there may come a time when we notice that concentrating is becoming harder and harder, or even that we are simply unable to do it for any length of time. And then we start to worry because we feel that we cannot get anything done as we are totally distracted and scattered, continuously and incessantly.Naturally, our first strategy should be to minimise our own stimulating of this jumping from one thing to another by restricting ourselves to doing the task we have at hand whole heartedly, without interrupting ourselves every few minutes or even seconds to check this last email that just came in to our inbox, or lookup something with Google. For most of us, this kind of scattered multi-tasking will only exacerbate the scattering of attention and gradually prevent us from doing any one thing for longer than a few minutes, if that. To minimise mental jumpiness we should minimise jumpiness in the way we work and function. Just turn off that email notifier, close your inbox, close your web browser, and work on your document or the problem you are trying to solve.Beyond this basic strategy of minimising scattering behaviours, what if instead of concentrating we simply paid attention. The essential difference is that although paying attention does require a certain kind of effort, it does not require excluding anything at all, it does not require the straining effort of continuously pushing things away to re-focus attention. In fact, the more facets of our immediate experience we include in paying attention---the more we open our attention---the more we can indeed pay close attention to what we are attending to. Since we tend to focus on the thoughts, images, memories and run-on stories and commentaries that we continuously tell ourselves throughout the day and night, since we tend to live in our head, looking out through the eyes as if they were our windows onto this world outside that surrounds and often threatens us in various ways, the means to bring in balance is to spread attention to the body.Feel the breath in the belly filling our inner cavity with air and keeping us alive in this very moment, and feel it in the belly with the belly, not just once, but breath after breath after breath. Feel the feet on the floor with the feet and toes, whether we are sitting, standing or walking: feeling the weight of the body rolling from the heel to the front of the foot, first on the right foot, then on the left, step after step. Feel the hands holding a cold glass of water, holding a hot cut of tea, holding a book, holding a baby: feeling the weight, the texture, the temperature. Feeling the water running on the skin when we wash the hands over the sink, the body in the shower. Really feel the body with the body. Don't talk about it to yourself, don't comment: just feel it.Doing this---feeling the life of this body with this living body---will gradually and naturally bring our attention into balance, allowing us to function more freely, more easily, and more efficiently, no matter what we are doing. However, on the most basic level, our emotions, moods, tendencies, states and thus the general configurations of attention, are regulated by hormones: messengers coursing through the blood carrying all sorts of signals to organs and tissues. And as it cannot possibly be otherwise because the same blood circulates everywhere, all of these hormones have some influence on our brain. Therefore, for the brain to function properly, and our moods to be stable, and our attitude positive, there is no other way than to re-establish and maintain proper hormonal balance. Hormones, in turn, are primarily regulated by what we eat and what we drink: hormonal balance is rooted in our diet.One of, if not the most important hormone---the one that has both the greatest direct and indirect influence on the other hormones---is insulin. For this reason, the only way to establish and maintain proper hormonal balance is to make sure that insulin is balanced---that it is by natural means as low as possible. When insulin is low, everything else naturally falls into place: appetite, energy levels, mood, mental function and sleep. Naturally, it should be needless to say that all chemical stimulants, be it coffee, alcohol, cigarettes or drugs (prescription or not) should be eliminated, as these are all potent hormonal disruptors.Fortunately, it is very easy to lower insulin levels and keep them low: as insulin levels mirror blood glucose levels, we need simply eliminate refined and starchy carbohydrates from your diet. Unfortunately, for most of us today this is not so easy because we are plainly addicted to carbohydrates.I use "addicted" with the same strong, negative connotation as it is used in the context of drug use, because it really is so in the sense that our entire hormonal system is regulated by glucose levels and insulin, and although we may think somewhat differently of the powerful urge to smoke a cigarette or have a cup of coffee, an intense craving for chocolate or plain old hunger, all of these are regulated by our hormones whose overall profile is shaped, (distorted rather), by the presence of sugar and insulin. So, we do need to get over our addition to carbohydrates in order to function smoothly and efficiently as stable and balanced individuals. This is done by gradually reducing refined and starchy carbs as much as possible. And there is no minimum: the less of them we consume, the better off we'll be.Eliminating these carbohydrates from our diet will most likely lead to the elimination of at least half, if not three quarters of our daily calories. Considering the multitude of detrimental effects carbs have on our health---on our body and mind---this is indeed quite sad, but for most of us it is true. So what do we replace these empty calories with? Fats, and mineral and enzyme rich foods.Fat is not only the constituent of every membrane of every cell in our body, but it is also the cellular fuel of choice. Therefore, fat should rightly be our main source of calories---at least 50% of them (I personally aim for 70% of my calories from fat). What kinds of fats? Lots of natural, unprocessed, chemically stable saturated fats from coconut oil, butter, eggs and cheese---preferably all organic to minimise the ingestion of toxic substances; monounsaturated fats from olive oil for salad dressings---choose a flavourful, unfiltered, fresh and cold pressed oil; polyunsaturated plant-based omega-3, omega-6 and omega-9 fats with Vitamin E complex from many different kinds of whole, raw nuts and seeds every day---buy only the best and freshest organic or wild harvested nuts and seeds; and polyunsaturated animal-based omega-3 fats with the vital Vitamins A and D from eggs, fish (for those who eat some), and krill oil supplements---these are absolutely essential for optimal health. Omega-3 fats are really important but needed only in small amounts. They should also be consumed in small amounts because they are very easily oxidised into free radicals. The animal omega-3 fats are particularly important for proper brain function.Cholesterol is essential, especially for optimal brain and nerve function because synapses---the connections that allow electrical impulses to travel from one nerve cell to another---are almost entirely made of cholesterol. Moreover, most hormones are also made from it as cholesterol is used as their building block. Therefore, we must consume plenty of cholesterol-rich foods such as eggs, as well as plenty of cholesterol synthesis-promoting foods such as the good saturated fats mentioned above.Minerals basically make up the solids of the body, and in this respect, it is vital to replenish them on a daily basis through the foods we eat: nuts, seeds and vegetables, (sea vegetable are the richest of all). And for vegetables, the greener and darker the better. Furthermore, eaten raw these nuts, seeds and vegetables provide plenty of enzymes and anti-oxidants that offer a wide spectrum of remarkable health benefits. It is crucial to keep in mind that all minerals and anti-oxidants are much better absorbed from the small intestine into the bloodstream when there is plenty of fat in the digestive system. In fact, in some cases, the absence of fat prevents the absorption of both minerals and anti-oxidants. I have not included fruit in this discussion because fruits are basically just simple sugars: glucose and fructose, and offer very little in terms of minerals, and phytonutrients compared to most vegetables. All berries, however, fresh or dried, are excellent as they are usually low in sugar, and often very high in anti-oxidant and healthful compounds.

Sometimes, allergies and toxicities such as heavy metal accumulation in the tissues, are at the root of what may appear to be either a mood or neurological disorder. The best way to detoxify and cleanse the body of heavy metals such as mercury is to take chlorella and spirulina supplements on a daily basis, on an empty stomach with plenty of water at least 30 minutes before meals. These have the ability to bind to heavy metals and flush them out of the body through the stools. And as for allergenic compounds, this needs to be investigated be each person individually.

Finally, water is vital for life and health. We must therefore have plenty of it, and drink on an empty stomach first thing in the morning and before meals.There is no way to address what we may call "concentration problems" without addressing everything about what we eat and drink. Everything relating to brain function is also related to bodily functions and vice versa. Whether we like it or not, and whether we recognise it or not, this bodymind is whole, and mind and body are seamless. This is therefore how it must be taken care of and treated.

Read More

But what about cholesterol?

Cholesterol is nothing less than vital for life. It is vital for development. It is vital for growth. It is vital for reproduction. It is ultimately vital for both life to emerge, and for life to sustain itself. This is not a personal opinion---it is a fact.Why? Because every membrane of every single cell in your body relies on cholesterol to give it structural integrity. Because every single nerve cell in your brain and every synapse through which nerve impulses are transmitted are mostly made of cholesterol. Because every sex hormone of every woman, man and child is constructed from cholesterol. Simply put: without cholesterol, animal life is impossible. There is not a single person in the world that can or would dispute this---it is simply so.Does it even make sense to say that cholesterol is important for health, when our very existence and that of every animal life form depend on it? And how in the world can anyone in their right mind even formulate the notion that cholesterol is bad in any way, let alone the cause of a disease, and go as far as suggesting that we should avoid it as much as possible, as well as try to minimise and even suppress our body's production of it as if it were some kind of poisonous substance whose purpose is to kill us? This is nothing less then absurd---totally and completely absurd.I wish it were enough to say only this to immediately dispel all false, but firmly held beliefs we hold 'on the dangers that cholesterol poses to our health' because they have been given to us, forced upon us over the years, and now ingrained in our conscious mind. But unfortunately, although those few fundamental points about cholesterol mentioned above are more than enough to convince me that the entire anti-cholesterol campaign is at best a huge misunderstand, and at worse the biggest and most lucrative scam in human history, I fear that for most of us who have been thoroughly brainwashed by decades of misinformation campaigns, it will not suffice. So let's look at this a little more closely, starting with the very basics, so that once you have read this article, you will be a lot better informed than you were, and in fact, almost surely better informed than your family doctor, as medical doctors tend to be pretty ignorant (I'm being lenient) of most things that relate to your health.No such thing as 'good' or 'bad' cholesterolFirstly, cholesterol comes in only one form: there is no such thing as good and bad cholesterol. Whether it is the cholesterol contained in the dark orange yolk of a fresh, free range, organic egg, whether it is the cholesterol synthesised by your liver through a complicated chain of steps that we still do not understand completely, or whether it is the cholesterol produced by the individual cells like the glial cells in the brain, or in any other tissue or organ other than the liver. And yes, this is yet something else that should make us clue in to the fact that cholesterol is vital for survival: unlike almost any other molecule, cholesterol is maybe the only one that probably every cell in every tissue can produce. Amazing, isn't it? Why would most if not all cells be endowed with this ability, if cholesterol was not of vital importance to their survival as a living entity?Anyway, there is only one form of cholesterol, and although I am repeating myself, it is very important to make the point as clear as possible: cholesterol is beyond good or bad---it is absolutely vital.What are LDL and HDL?Secondly, what is usually referred to as 'good' or 'bad' cholesterol (the result of a marketing scheme by the pharmaceutical industry), are in fact molecules called lipoproteins. They are proteins that transport lipids in the bloodstream (hence lipo-protein), and in particular cholesterol, to and from tissues in different parts of the body. Cholesterol is a waxy, fatty substance that is not soluble in water and therefore cannot flow in the bloodstream that is mostly water. For this reason it needs to be transported where it is needed by some other molecules: the lipoproteins. It is indeed most unfortunate that we hear about LDL as the 'bad', and HDL as the 'good' cholesterol. This is not only false, but completely absurd:LDL stands for Low Density Lipoprotein, and HDL stands for High Density Lipoprotein. The reason why this erroneous association and misguided use of these terms came about---beyond that marketing scheme intent on making us believe that there is some bad agent in our blood that we need to get rid of by taking drugs---is based on the fact that one of the functions of LDL molecules is to transport cholesterol from the liver, where most of it is manufactured, to cells and tissues that need it for repair and regeneration. Since LDL helps to carry cholesterol out from the liver and into the bloodstream to tissues, in thinking that cholesterol in the blood should be minimised, then this is clearly a terrible thing. Hence LDL was dubbed the 'bad' cholesterol. Does this makes any sense? Not the slightest.Why does the liver produce this complex cholesterol molecule, and why is there LDL to carry it from the liver to the organs and tissues of our body? Because cholesterol is necessary for the manufacture, maintenance and repair of the membrane of every single one of the 50 trillion cells in the body.Naturally, for a molecule as important, as complex to synthesise, and therefore as precious as cholesterol, the organism has evolved a way to collect and reuse it: obviously, the three R's, Reduce (the need for synthesis), Reuse and Recycle (everything you can). One of the roles of the HDL carrier molecules is to scavenge around for unneeded or surplus cholesterol and bring it back to the liver. Once more, in the mindset that cholesterol in the blood should be minimised---beyond the clever trick to introduce the essential protagonist to counter the bad LDL, for if there is a bad guy there naturally must be a good guy---since HDL helps to carry cholesterol from the bloodstream back to liver, this must be a good thing. Hence HDL was dubbed the 'good' cholesterol. Does this makes any sense? Not the slightest.So we know that one of the the roles of LDL and HDL molecules---certainly the most obvious one---is to transport cholesterol from the liver to cells and tissues, and back to it for reuse and recycling or breakdown into other molecules. LDL and HDL work together as essential partners in the cholesterol transport system. But do these lipoproteins have other roles in the complex biochemistry of the human body? Indeed they do.HDL and LDL: beyond cholesterol transportAs incredible as this may possibly sound to you if you are still brain-washed by the anti-cholesterol campaigns intended to convince you to eat more highly processed, tasteless, odourless, chemically altered and typically rancid vegetable oils, as well as to start taking 'life-saving' statin drugs, compiling all the data we have from studies that measured lipoprotein levels in the blood and death rates, we find that the lowest mortality from all diseases occurs in people with total lipoprotein levels between 200 and 240, centred on 220 mg/dl. These are age-corrected data, so as we age levels should gradually rise. But that's not the only thing we find from looking at this graph of compiled data: there is an inverse relationship between lipoprotein levels and mortality such that the lower the lipoprotein levels are, the higher the death rate! and this for all diseases---infectious, parasitic and cardiovascular. To those who know what HDL and LDL molecules do, this is not surprising at all. It is, in fact, perfectly sensible.As much as some may believe that the main role of LDL and HDL molecules is to carry cholesterol to and from tissues for cellular maintenance and repair, some would argue that their main role is not simple transport of cholesterol, but in fact, it is to protect the organism from bacterial and viral pathogens. It is firmly established that lipoproteins bind to endotoxins to inactivate them and protect against their toxic effects that include arterial wall inflammation. Endotoxins are part of the outer membrane of the cell wall of Gram-negative bacteria such as Escherichia coli, Salmonella, Shigella, Pseudomonas, Neisseria, Haemophilus influenzae, Bordetella pertussis and Vibrio cholerae, all of which can cause severe, well known diseases. In addition, lipoproteins also protect against viruses like hepatitis B, and consequently in this case, against cancer and other diseases of the liver as reported here. There are many scientific publications on this and related topics, but most are quite complicated. (If you are interested in this kind of thing, you can look at this article, and browse through the long list of references. For those interested in bacteriology, I found a great free online textbook by Kenneth Todar of the University of Wisconsin.)The essential point to remember, however, is that the lipoproteins LDL and HDL play a very important role in our immune system by neutralising harmful toxins released from the activity of pathogenic bacteria and viruses, thus protecting us from infectious diseases and the related chronic inflammation. This is why people with higher levels of lipoproteins LDL and HDL live longer and healthier lives.Cholesterol and the brainAlthough all cell membranes rely on cholesterol for structural integrity, neurons or brain cells are highly enriched in cholesterol that makes up more than 20% of their dry weight. The importance of this enrichment can be appreciated when we consider that our brain accounts for about 2% of our body weight, but it contains about 25% of the cholesterol in the body. This means that the concentration of cholesterol in the brain is 12.5 times higher than the average bodily concentration. Isn't this enough to convince you of the extreme importance of cholesterol for proper brain functions?As elsewhere in the body, cholesterol is found in the cell membrane---for brain cells this is the myelin sheaths that insulate them. But in addition, and maybe more importantly, cholesterol is the main constituent of the synapses through which nerve impulses are transmitted from one neurons to another. And contrary to common wisdom that lipoproteins cannot cross the blood-brain barrier, and therefore brain cholesterol must be synthesised in the brain, it has been shown that if something prevents brain cells from synthesising the precious cholesterol, then they use whatever they can get from the lipoproteins circulating in the blood.With all of this in mind, is it surprising that when cholesterol synthesis is partially or completely de-activated using statin drugs, some of the most common symptoms seen are memory loss, dizziness, mental fog, slowing reflexes, etc., all of which are obviously related to brain function? Is it surprising that Alzheimer's patients tend to have lower cholesterol levels both in the blood and in the brain? Well, no. It's not.For me, there is no need to go further: I want to have a brain that is provided with all the fat and cholesterol is needs to function to best of its abilities for as long as I am alive. If you want to learn more about the incredibly detrimental effects of cholesterol-reducing drugs, you should read any or all of Dr Duane Graveline's books: Lipitor: Thief of Memory, Statin Drugs Side Effect and the Misguided War on Cholesterol, and Statin Damage Crisis. I also stumbled upon this article in the Wall Street Journal (out of all places), that describes how important cholesterol is for the brain, and hence, how damaging cholesterol-lowering drugs can be.Cholesterol and hormonesWhat more needs to be said to emphasise the importance of cholesterol for healthy hormonal function than that all steroid hormones are made from it. Steroid hormones, as the names suggests, are steroids that act as hormones. Hormones are messenger molecules that tell cells what to do and when to do it. To carry out their function---to pass on their message---they must reach the nucleus of the cell. But to reach the well protected nucleus and bind to specific receptors in it, hormones must pass through the fatty cellular membrane. For this reason, hormones are made of fat: they are lipids. Since lipids are not water soluble, as is the case of cholesterol, hormones rely on specialised proteins to transport them in the bloodstream throughout the body.There are 5 groups of steroid hormones: glucocorticoids, mineralocorticoids, androgens, oestrogens and progestogens, as well the closely related hormones that we refer to as Vitamin D. Each one of these is a family of hormones responsible for regulating the metabolism related to a specific group of substances.Glucocorticoids are steroids produced in the adrenal gland, and responsible for glucose metabolism. Cortisol is maybe the most important of glucocorticoids as it is absolutely essential for life, regulating or supporting a variety of important cardiovascular, metabolic, immunologic, and homeostatic functions.Mineralocorticoids are responsible for the regulation minerals, the most important of which are sodium and potassium. The primary such hormone is aldosterone that acts on the kidneys to regulate reabsorption of sodium and water from the blood, as well as secretion of potassium. These two minerals are required in the well known sodium-potassium pump that continuously, for every single cell, work to ensure that the concentration of sodium stays higher outside, while the concentration of potassium stays higher inside the cell. This is crucial for its proper function. In addition, it is through the sodium-potassium pump that glucose is transported from the bloodstream into the cell.Androgens, oestrogens and progestogens are sex hormones. It is needless to say that they must all be in good balance for proper development and physiological function, as well as psychological health in both males and females. It is important to emphasise that although we typically associate the main androgen, testosterone, with men, this hormone plays a very important role in muscle development and inhibition of fat deposition, both of which are clearly of great value to women as well. There are also several psychological factors regulated by the concentration and relative balance of male and female sex hormones such as assertiveness, motivation, self-confidence, on the one hand, and calm, caring and compassion, on the other. Interestingly, the most important oestrogens are derived from androgens through the action of enzymes. Therefore a deficiency in androgens will naturally lead to a corresponding deficiency in oestrogenic hormones. As is well known, oestrogens regulate all aspects of the reproductive system in women. Phychologically, low oestrogen levels are associated with depression and hyper-sensitivity in females, and insecurity and obsessive compulsive type of behaviours in males. Progestogens are most important in their role in maintaining pregnancy (pro-gestation) and are therefore most important for women. They are, however, rather special hormones because progestogens are precursors to all other steroids. All steroid producing tissues such as the adrenals, ovaries and testes, must therefore be able to produce progestogens.To learn more about hormones, their importance, their effects and how to bring them into balance through diet, I recommend the Hormone Solution (english) or Le regime hormone (french) by Thierry Hertoghe, MD.Too much cholesterol?There is no such thing as too much cholesterol. The body produces exactly what it needs depending on the conditions, and as such, the amount in circulation is a consequence of other factors. Lipoprotein levels, reflecting the amount of cholesterol in circulation, are a function of genetics and of the state of the body. Genetic tendencies are what they are. The state of the body, as far as cholesterol is concerned, means primarily the condition of the tissues. And the condition of the tissues reflects the amount of damage they sustain in relation to the amount of repair that takes place: in other words, the rate of ageing. Since cholesterol gives cell membranes strength and integrity, it is needed to repair and rebuild cells: the more cellular reproduction as in growing children, the more cholesterol is needed; the more damage to cells, the more cholesterol is needed. The damage sustained by tissues is mostly from glycation, free-radicals and chronic inflammation, all of which are intimately related because blood sugar triggers both free-radical production and inflammatory processes, but inflammation also arises from the action of toxins and infectious agents like viruses and bacteria.Refined and starchy carbohydates and chemically unstable polyunsaturated vegetable oils both directly cause glycation, free-radical damage and chronic inflammation. They should be eliminated from the diet---from everyone's diet. Doing this is the only truly effective way to minimise tissue damage and ageing, maximise repairing and rebuilding, and as a consequence, minimise risks of degenerative diseases. It will also normalise cholesterol synthesis and usage, and bring lipoprotein levels into their optimal range, completely naturally because, once more: cholesterol needs and lipoprotein concentrations are always a consequence of other factors. They should never be tampered with and manipulated, because intervention of this kind can only and will inevitably lead to problems.Further readings on cholesterolIf you want to learn more about cholesterol, I recommend to first read the short and light-hearted book by Malcolm Kendrick, MD, entitled The Great Cholesterol Con subtitled The truth about what really causes heart disease and how to avoid it. Beyond showing that cholesterol and saturated fat are not in any way causes of heart disease, this author presents convincing evidence that, in fact, it is psychological stress that is surely one of the main causes of heart disease.After reading this, if you want to read a complete analysis of all the studies related in some way to heart disease that is also very accessible to a general readership, you should read the much longer but very thorough book by Anthony Colpo, revealingly also entitled The Great Cholesterol Con, but subtitled Why everything you've been told about cholesterol, diet and heart disease is wrong! Beyond the thorough review of the literature and clearly explained conclusions, the author looks at all major factors demonstrably linked to the causes of heart disease.For a shorter but more technical review and close look at the cholesterol and saturated fat related scientific literature, you should read Fat and Cholesterol are Good for You by Uffe Ravnskov, MD, PhD. Beyond also showing that cholesterol and saturated fats are not in any way the cause of heart disease, this author makes a case for infectious disease as the root cause of arterial inflammation, buildup of plaque, and eventually heart disease. His line of arguments is also quite convincing.The excellent book by Gary Taubes, Good Calories, Bad Calories, is a thorough review of 150 years of diet-related medical history, especially in what relates to obesity and diabetes, but also heart disease. The writing style is that of a good science writer, as is the author. There is a full analysis of the lipid hypothesis of heart disease, followed by a full analysis of the carbohydrate hypothesis of heart disease. And although there more of an emphasis on the detrimental effects of eating carbohydrates, there is naturally considerable discussion of all points that relate to cholesterol and saturated fats.Lastly, this is an excellent web site on cholesterol, full of interesting and well-researched articles: http://www.cholesterol-and-health.com and an excellent interview here.Why Oh Why?Why is it then, that most of us believe cholesterol is bad? Why do most of us believe we should, not sometimes, but always avoid foods that contain cholesterol or saturated fats that seem to help the body manufacture cholesterol? Because we have been told that it is. Nothing more complicated than that. We have been told this absurd, unfounded and outright dangerous story that is in fact a lie, and we believe it. Why have we been made to believe this? The answer is two-fold: bad science, bad scientists and egos, on the one hand, and on the other, money: lots and lots of money. In fact, more than 29 000 000 000 dollars worth of money.For the 'bad science' part I will only say this: It is true that the accumulation of plaque can lead to heart disease. It is also true that plaque is very cholesterol-rich. However, the reason why plaque is formed is because the arterial tissue is damaged and needs to be repaired. The cholesterol-rich plaque is like a scab whose role is to allow the damaged tissue to heal. And just as a scab, once the tissue is healed, it 'falls off' and is brought back to the liver for recycling. The cholesterol is part of the healing agent: the cure, so to speak. The damage to the tissue comes from other things, wether it is inflammatory endotoxins released from pathogenic bacteria, cigarette smoking-related chemicals, or maybe most importantly glucose sticking haphazardly to proteins, damaging the arterial walls and forming advanced glycation end-products or AGEs for short, cholesterol is the bandage meant to help the tissue heal---not the cause of the problem.For the 'money' part, I will have to write a few more paragraphs. In the 1950s the vegetable oil industry found a way to hydrogenate inexpensive liquid vegetable oil made from soy and corn into firm shortening. This gave them the perfect means to compete for, and indeed takeover a large share of the market that had traditionally been held by the dairy (butter), meat (lard) or coconut and palm oil producers to which they did not have a way to tap into. With hydrogenation, they were able to produce butter substitutes (margarines), as well as lard and tropical oil substitutes (shortenings), and offer them at a mere fraction of the price of the original products with the potential of making enormous profits with their sale on a national and in some cases international scales. Therefore, unfortunately, but not so surprisingly, many of the large scale trials in the field of dietary science carried out in the 60s, 70s and 80s were funded by the vegetable oil industry.The money that the vegetable oil industry must have made and still makes the world over, however, is probably nothing in comparison to the billions raked in every year by a handful of pharmaceutical manufacturers that produce and sell the cholesterol-lowering statins. In 2003, the best selling prescription drug in the world was Pfizer's Lipitor with sales of 9.2 billion dollars (that's more than 25 million per day). And in 2009 statin sales generated a staggering 25 billion dollars in revenues, and this figure has been rising since the very beginning of statin sales in the 1990s.But doctors don't have anything to gain from this, do they? Well, no, not really. But for one thing, doctors are usually not research scientist, and thus they are generally not only very poorly informed about health-related matters, but also unable or simply uninterested in reading books written by specialists on various health topics, let alone in reading the often technical and complicated scientific literature.To make matters worse, 75% of clinical trials are funded by pharmaceutical companies, and therefore about 75% of all published medical papers also derive from pharmaceutical funding. Finally, the vast majority of conferences and workshops that doctors are invited to attend, all expenses paid of course, to keep them informed of the latest and greatest developments in medical science are also usually fully funded by the pharmaceutical. It goes without saying that what is presented at these conferences naturally serves their interests that are obviously purely financial.I think you get the picture, but if you want to read more about this, all of the independent researchers and authors mentioned above: Malcolm Kendrick (The Great Cholesterol Con) and Uffe Ravnskov (Cholesterol and Fat are Good for You) who both practice medicine and have thus experienced this first hand, as well as Gary Taubes (Good Calories, Bad Calories) and Anthony Colpo (a different The Great Cholesterol Con) have some things to say about corporate involvement in clinical trials. Obviously, you can also search the internet to your heart's content.Final wordsI certainly hope I have succeeded in convincing you that cholesterol is not in the least harmful, and that it is, in fact, absolutely vital to your health: vital for your hormonal system, vital for your immune system, vital for your brain, and vital for every cell in your body.I also hope I have convinced you that it is not only the case that everything you have been told that incriminates either cholesterol or LDL as causing heart disease or any other ailment is wrong, but that you should actually do whatever you can to maintain optimal lipoprotein levels around 220 mg/dl, and supply your body with ample amounts of health-promoting fats, increasing your intake of coconut oil (the most healthful of all fats), as well as fat-soluble vitamins and cholesterol from organic eggs from free range, grass-and-insect eating hens (preferably raw in smoothies in order not to damage any of the fats or proteins), butter and fatty cheeses (highly preferably made from unpasteurized milk to maximise digestibility), and grass-fed meats if you are not vegetarian or vegan. But here, and as always, the most important and fundamental health-promoting thing to do is to eliminate insulin-stimulating carbohydrates.

Read More

Minerals and bones, calcium and heart attacks

Asking Robert Thompson, M.D., author of The Calcium Lie, what causes atherosclerosis and heart disease, he would most likely say that it is the accumulation of calcium in the veins and arteries, but also everywhere else in the body, that leads to a hardening of the tissues, and eventually to the complete stiffening of the blood vessels that inevitably leads to heart attack. He might add that this calcification of the body comes from an imbalance in the amount of calcium that is consumed compared with that of all the other essential minerals required for proper bodily function.He would also be quick to point out that based on a huge database of about one million results of detailed hair mineral analysis, about 90% of the population is deficient in most if not all elements of the spectrum of essential minerals we need for optimal health, while being over-calcified. Dr Thompson would probably also say that a majority of the conditions that lead to disease, no matter what form it takes, are rooted in mineral deficiencies. Naturally, given that all deficiencies grow with time unless something is done to address the problem, how can this fundamental issue not be related to ageing.Just as the amount of water in our body and cells tends to decrease with age, so do both bone mineral content and density, as well as the specific hormones like calcitonin and parathyroid hormone. Calcitonin helps fix calcium in the bones, and parathyroid hormone removes calcium from bones when it is required for other purposes. Their main roles is to regulate the amount of calcium to fix in our bones, and their delicate balance depends on factors mostly related to diet and nutrition, but we know that it is intimately linked to Vitamin D levels.We also know that uric acid tends to accumulate in the tissues throughout the body with time, making every soft tissue stiffer and making our every movement more difficult and painful as we get older, and that an acidic environment tends to leach out minerals from the bones. So what causes bone loss: dropping levels of hormones, dropping levels of Vitamin D, increasing levels of uric acid, increasing mineral deficiencies, all of these, other things?Thompson repeats throughout his book: "bones are not made of calcium, they are made of minerals". What minerals? Calcium and phosphorus, yes, but also sodium, sulfur, magnesium, potassium, copper, iodine, zinc, iron, boron, and more. Calcium accounts for about 30% of the mineral content of bone, but phosphate (PO4) makes up about 50% of the bone mass. And in fact, what makes bone hard is calcium phosphate Ca3(PO4)2(OH)2, which immediately shows that it is the balance of calcium and phosphorous intake and absorption---mostly regulated by Vitamin D, which is of vital importance for bone strength and rigidity.However, it is essential to understand that it is the presence and balance of all of the 84 essential minerals found in unrefined sea or rock salt that are required for optimal overall health, which includes the health of our bones. And remember that table salt contains 97.5% sodium chloride and 2.5% chemical additives, whereas unrefined sea salt from the French Atlantic contains 84% sodium chloride, 14% moisture, and 2% trace-minerals (follow the links to see the chemical analysis of Celtic Sea Salt, Himalayan, and a comparison of the two).Therefore, one of our primary aims when choosing the foods we eat should be to maximise mineral content. Since Nature's powerhouses of nutrition, the foods with the highest mineral content and nutritional density are seeds, nuts, sea vegetables, and dark green leafy vegetables, in that order, these are the foods that we should strive to eat as much of as we can in order to always provide the body with maximum amount of minerals that we can. Unrefined sea or rock salt should also be eaten liberally for a total of at least 1-2 teaspoons per day with 2-4 litres of water. (And no, salt does not cause hypertension or any other health problems of any kind, and never has.)Now, maximising our intake of minerals through our eating of mineral-dense foods, how can we ensure maximum absorption of these minerals? Two key elements are Vitamin D, and fats, especially saturated fats.Vitamin D is so extremely important for so many things that I simply refer you to the non-profit Vitamin D Council web page for long hours of reading on everything related to Vitamin D. I will just quote the following as an extremely short introduction to it:

Vitamin D is not really a vitamin, but one of the oldest prohormones, having been produced by life forms for over 750 million years. Phytoplankton, zooplankton, and most animals that are exposed to sunlight have the capacity to make vitamin D.In humans, vitamin D is critically important for the development, growth, and maintenance of a healthy body, beginning with gestation in the womb and continuing throughout the lifespan. Vitamin D's metabolic product, 1,25-dihydroxyvitamin D (calcitriol), is actually a secosteroid hormone that is the key which unlocks binding sites on the human genome. The human genome contains more than 2,700 binding sites for calcitriol; those binding sites are near genes involved in virtually every known major disease of humans.

Vitamin D is one of, if not the most important substance for optimal health. I take between 25000 and 50000 IU per day, which is approximately the amount produced from about 30 minutes of full body exposure to midday sun for a caucasian. But for the purpose of this discussion on minerals and bones, it is enough to know that vitamin D plays an crucial role in regulating how much calcium and phosphorus is absorbed in the intestine and ultimately fixed in the bones.On fats there is so much to say that it will have to be for another post. You could read The truth about saturated fats by Mary Enig, PhD, on this coconut oil website that has links to many other interesting articles on fats. And remember that coconut oil is by far the best fat to consume, but more on this another time. But once more, the essential thing to remember is that the more fat there is in the intestines, the more minerals (and antioxidants) will be absorbed into the bloodstream.Now, what is ageing if it is not the gradual decay of the body and its systems. Given that everything in the body is constituted and constructed from the food we eat and water we drink, isn't it utterly obvious that in order to maintain the bodymind as healthy as possible for as long as possible it is absolutely essential to ensure that it is always perfectly hydrated by drinking plenty of water before meals, maximise the nutrition density and mineral content of the foods we eat, and minimise intake of harmful substances that disrupt or damage the delicate inner workings of this bodymind? I certainly think so.

Read More

Water, ageing, and disease

Thinning skin, drying hair, wrinkles, brown spots here and there, patches of discolouration. Sagging eye lids, sagging cheeks, sagging skin all over the body. Loss of bone mass, loss of muscle mass. Stiffening joints, stiffening muscles, stiffening tendons and ligaments, stiffening veins and arteries. Weakness, tiredness, aching. Loss of memory, loss of concentration, loss of intellectual capacity, dullness. Metabolic syndrome, diabetes, senility, dementia, Alzheimer's, arthritis, elevated cholesterol, atherosclerosis, stroke, kidney failure, liver failure, heart failure, cancer.Are all these symptoms, these conditions, independent from one another? Are they different? Do they arise spontaneously and develop on their own? Do they just fall upon us unpredictably as rain does? Or are they consequences of more basic factors that elude most of us.If we could ask the late Dr. Batmanghelidj (1931-2004), M.D., about ageing and disease, he would surely say that its primary cause is the cumulative effects of chronic dehydration on the body, and the plethora of consequences that this brings about. This chronic dehydration that only increases in severity with time, gives rise to so many problems.But independently of anyone's opinion, it is an observational fact is that when we are born, the body is 90% water, but when we die, it is only 50% water. Doesn't this tell us something? Doesn't this tell us that ageing and dying could be considered as a process of gradual dehydration?The main way in which we provide water to the body is by drinking. And all of the nutrients required to sustain the body come from the foods we eat. Therefore, the digestive system is truly at the root of it all. As I explained in this previous post on the important of water in the digestive system, the direct consequences of not drinking adequately on an empty stomach long enough before eating, are the poor digestion of food, and the damage caused to the lining of the stomach and intestines that eventually lead to ulcers and leaky gut syndrome.But poor digestion of food means improper break down of protein into amino acids, and the deficiency in the full range of these essential compounds necessary for so many functions in the brain and in every cell of the body. Poor digestion of food means improper break down of fats into their constituent fatty acids that provide not only the primary source of energy, but also the very building blocks of the membrane of every single cell in the body. Poor digestion of food means improper absorption of minerals and the complex molecules we call vitamins, that together with the proteins and fats are used not only in building all the tissues in the body, but also in every single chemical reaction, transport and communication between cells and tissues. Over time, poor digestion and damage to the digestive organs leads to the permanent loss of the ability to absorb certain minerals and vitamins. There is no doubt that this leads to complications that will manifest in various complex ways.The lack of water in the digestive system leads to a lack of water in the bloodstream. The blood gradually thickens, its volume decreases, and its viscosity increases. This increases the friction between the blood and the walls of the blood vessels, and therefore the resistance in the flow. The heart is now under severe stress as it attempts to pump this thick, viscous, sticky blood to all parts of the body, and through all the vessels from the largest arteries to the narrowest almost microscopic veins. But this intense efforts by the heart also stressed the vessels themselves. Stress on the vessels leads to lesions. Lesions lead to plaques whose purpose is to patch up and heal the damaged tissues. The accumulation of such plaques, whose spontaneous bursting causes strokes, leads to atherosclerosis that eventually leads to heart failure. Pretty grim picture, isn't it? But far from being complete yet.The lack of sufficient amounts of water in the bloodstream obviously means that every organ and every cell of the body gradually becomes more and more dehydrated over time. For the cell, water is by far the most important substance, it is the context in which absolutely everything takes place, and on which everything depends. In order to maintain as much of this precious water as is possible, every single cell starts to produce more cholesterol to seal its membrane a well as possible and keep and protect its water. This is why dehydration leads to the appearance of excessive amounts of cholesterol, which in this case is the cell's essential water preservation mechanism.The lack of sufficient amounts of water in the bloodstream is particularly detrimental to the articulations. The joints of the body, all those areas where out limbs bend, are a complex assemblage of tissues whose primary component is cartilage. Cartilage is a kind of a simple matrix that holds water. It is the water content of the cartilage that gives it its suppleness and flexibility, allowing it to protect the bones from rubbing against each other in the joints when we move. It is well known that as we age, all of our joints and cartilage dries out, and we develop what we call arthritis. But is this because we are getting older, or is it because we are getting more and more dehydrated with every passing day? Is arthritis a disease of ageing or is it a consequence of chronic dehydration?The amazing thing is that the only way to bring water to the cartilage in the joints to maintain their flexibility and prevent their degradation is through the porous ends of the bones to which the cartilage is attached. And the only way to bring water to the end of the bone is through its marrow. And the only way to bring water to the marrow is by way of the blood. Therefore, to prevent the gradual dehydration and subsequent breaking down of the cartilage in the joints, the blood must be well hydrated: thin, easy flowing and full of water.And what does all this mean for the rest of the body? By weight, the muscles are 75% water; the blood is 82% water; the lungs are 90% water; the brain, the primary element of the central nervous system, is 78% water; even the bones are 25% water. So, it's pretty simple: as dehydration increases over time, all organs, all tissues and all cells suffer, shrink, weaken, and succumb ever more easily to disease, whatever form it may take.Dr. Batmanghelidj presents a convincing line of arguments linking breathing and lung disorders like asthma and allergies to chronic dehydration, and also believes that the dehydration of brain and nerve cells whose composition is also mostly water, leads to disorders of the central nervous system such as Alzheimer's disease.And the skin? Think about any fruit or vegetable that you place on a shelf in the fridge, like an apple, a carrot or a radish, and leave there for a long time. It will gradually soften, then start to wrinkle, and with time continue to soften and wrinkle more and more until it is nothing but a tiny dried out little thing. Moreover, you may also have noticed that if you take a partly dehydrated carrot, radish, or celery stick, for example, cut them and place them in water for a while, they will re-hydrate by refilling the cells with water, and in so doing become hard and crunchy once again. But if you wait too long, then no matter how much time you leave them in water, the cells will not re-hydrate. Logically, since our water content is similar to a fruit or vegetable, what happens to the body is probably very similar, and hence gradual the softening, wrinkling, weakening, and overall degradation of the bodymind at the days and years go by.Obviously, this does not mean that by drinking enough pure water---no other liquids can be substituted for water---to ensure that the bodymind is well hydrated, we will not age. Of course not. But at least, we will ensure that ageing and all the consequences associated with ageing are not accelerated by dehydration. The last thing we want is to accelerate our rate of ageing and our susceptibility to disease.The truth is that for most living beings on Earth, water is life. There is no question about this. We and most terrestrial animals are constituted of about 60-70% water and 30-40% minerals---by mass. But in fact, in terms of the number of molecules in our bodies, we are 99% water! Can we grasp the significance of this? Can we now realise what dire consequences the slightest dehydration can cause to every cell, every tissue, every organ, and every system of the body? It is hard to quantify, but it is huge. And coming back to our initial question: are ageing and disease different? Are they related? What do you think?Although chronic dehydration is so common that it is generalised, avoiding dehydration is very simple: drink water, unsweetened herbal teas, and light green tea. Don't drink sweet drinks, juices or sodas: these are full of sugar, including large amounts of fructose, that totally disrupt both the hormonal system and the metabolism, promoting hormonal imbalances and insulin resistance. Don't drink milk: this is a food that contains fats, proteins and carbohydrates, and trigger all the required digestive processes that further exacerbate the problems associates with chronic dehydration. Just drink water.At the very least, drink half a litre when you get up in the morning (7:00), half a litre mid-morning (10:30), half a litre 30 minutes before lunch (12:30), half a litre in the late afternoon (16:30), and half a litre 30 minutes before dinner (18:30). And make sure you have plenty of unrefined sea salt with your meals. If you are fasting, take a pinch of salt on at least some of the occasions when you drink to reach a total of 1 to 2 teaspoons over the course of the day (including the salt eaten with meals). In this way, you will provide your body a good amount of water and salt to ensure proper hydration and excretion of acids through the urine.

Read More

Why we should drink water before meals

We all need to drink at least about two litres of water every day. Not juice, not sodas, not coffee, not tea: plain water. None of these other liquids have the properties of water, nor do they have the desirable effects of water on the body. Most of us don't however, and so we are chronically dehydrated. Whether it is 75% or as high as 90%, it is evident that a very large portion of the population is chronically dehydrated.The digestive system can be viewed as the most fundamental because everything used to sustain life in the body goes through it. In a very real sense, we are a digestive system, supplemented by a central nervous system and refined sense organs to allow us to devise ways to get food (and avoid being eaten), coupled to a refined locomotor system to allow us to gather the food (and run away when it is needed). Since every component of every cell in the body is made from the nutrients in our food, it is obvious that everything in the body depends on the digestive system. And for the digestive system, the single-most important element is the presence of ample amounts of water.

cropped-glass-of-water

As soon as we even think about eating, the digestive system starts to get ready. The pancreas secretes a little jolt of insulin just in case carbohydrates come in, and the stomach starts to produce the highly acidic digestive gastric juice (pH of 1-2). This gastric juice is composed of only a little bit (0.5%) of hydrochloric acid (HCl) and a lot of salt, both sodium chloride (NaCl) and potassium chloride (KCl). The stomach has sensor cells to know exactly how much protein, fat and carbohydrates are present at any given time, and thus can adjust the production and composition of the gastric juice.Although present in very small amounts, the hydrochloric acid is the essential compound for activating the enzymes responsible for breaking down protein, which is its main purpose because both fats and carbohydrates are mostly broken down in the intestine. But to make it to the stomach without causing any damage along the way, the two constituents of this highly corrosive acid, the hydrogen (H) and the chlorine ions (Cl), are produced separately and transported to the inside of the stomach where they combine to form the acid.The delicate lining of the stomach with all its different kinds of highly specialised cells, is protected from the acidic gastric juice by an alkaline layer of mucus. This mucus is between 90 and 98% water, with some binding molecules and a few other components. It can be regarded as a blanket of water whose primary role in the stomach is to protect its lining from the gastric acid. The very thin mucosa that produces and maintains the mucus layer, also secretes sodium bicarbonate that sits in it, and neutralises the acid upon contact when it penetrates the layer, leaving only sodium chloride (salt), water and carbon dioxide. The neutralisation reaction is simple: HCl + NaHCO3 -> NaCl + H2O + CO2.As we get progressively more dehydrated, not only are the stomach cells incapable of releasing adequate amounts of water into the stomach in order to allow for the proper mixing of the food and acid into chyme with the optimal consistency, but the thickness of the protective mucus layer decreases, thus allowing the acidic contents to damage the fragile lining. This is what eventually leads to stomach ulcers, according to a well known specialist in the matter, Dr Batmanghelidj, author of Your Body's Many Cries for Water.The contents of the stomach are churned and blended between one and three hours depending on the amount and composition, until the chyme is liquified and smooth, at which point it is poured into the duodenum, the first part of the small intestine. It is in the small intestine that the real work of the break down and absorption of nutrients into the bloodstream takes place over a period of about 24 hours. The sensor cells in the duodenum will immediately determine the pH and composition of the chyme in order to send the messenger hormones to the pancreas to secrete the right amount of the alkaline, watery sodium bicarbonate solution necessary to neutralize the acid, and to the liver to secrete the right amount of bile needed for the breakdown of fats.And even though the pancreas is known primarily for its role in producing and secreting insulin needed to clear the bloodstream of sugar, it is arguably its role in secreting this alkaline solution that is the most important. Indeed, as the duodenum does not have a protective layer of mucus as the stomach, it is this sodium bicarbonate solution that protects it and the rest of the small intestine from the devastating effects that the highly acidic chyme can have on it.However, just as even partial dehydration causes the protective mucus layer in the stomach to dry out and shrink, making it permeable to the gastric acid that eats away at the delicate soft tissues, dehydration also causes the pancreas to be unable to secrete as much of the watery sodium bicarbonate solution as is required to fully neutralise the acidic chyme that, therefore, also damages the intestine. In fact, that there are several times more cases of duodenal as there are stomach ulcers attests to the reality that the lining of the intestine is all that much more fragile as it is unprotected and thus directly exposed to the excessively acidic chyme.Therefore, water is of the utmost importance in protecting the lining of the stomach and intestine from the acid required for the break down of proteins into amino acids. Water is of the utmost importance for proper digestion and absorption of the nutrients in the food. And hence, water is of the utmost importance in maintaining a healthy digestive system meal after meal, day after day, and year after year throughout our life.We must make sure that the body and digestive system are properly hydrated before eating. And for this, all we need to do is drink half a litre of plain water 30 minutes before meals, and not drink during nor after the meal for two to four hours.Drinking during or soon after a meal will only dilute the chyme, making it excessively watery. This will not lower the pH, because water does not neutralise acid. It is best to ensure proper hydration prior to the start of the digestive process, providing the water necessary for the mucosa and pancreas to function optimally, and allow the stomach to adjust the water content of the chyme on its own. I personally usually wait two hours after a snack or small meal, and at least three to four hours after a large meal.The time needed for the chyme to leave the stomach through the pyloric sphincter and enter the duodenum depends on its amount and composition. For example, fruit or any other food consisting mostly of simple sugars eaten on an empty stomach will make it into the intestine, and the sugar into the blood, in a matter of minutes: Since there is no protein, no acid is required for its breakdown in the stomach; and since there is no fat, no bile is required to break it down in the intestine.Naturally, the time needed for the stomach to process a small meal will be less than that needed to process a large meal of more or less equal composition. In fact, given that our stomach is a very small pouch with an empty volume of about 50 ml, and a full volume of about 1 litre (up to a max of 2-3 litres when it is really extended), the time needed for large meals increases substantially and disproportionately compared to smaller meals.

Read More

Fat Loss and Exercising More

It’s easy to see the point when considering an extreme example. Imagine a morbidly obese person who decides to start fasting, and to simply stop eating until they are no longer obese. There is an important historical example of this. And it is historical because it was recorded and documented from beginning to end. It holds the record for the longest fast. Angus Barbieri fasted during 382 days, and lost 125 kg. Do you think he had to exercise to lose these 125 kg of body fat?

Is that an unfair example in some way because it’s obvious that if we stop eating we will for sure lose body fat? If this is obvious, then why do we hold the belief that we need to exercise more in order to lose body fat? It should be clear that it isn’t necessary. Let us now get to the underlying mechanism.

The first thing that happens when we stop eating, is that blood sugar concentration drops. What follows is that insulin concentration also drops. Insulin is a hormone that signals the presence of plenty, and that it would be wise to store the nutrients circulating in the bloodstream for later when there aren’t any. Low insulin levels signals the opposite: that there isn’t much available, and that reserves should be tapped into to supply the energy needed by our cells to function.

It is therefore this—low insulin concentration—that is required to create the conditions to lose body fat.

But what about calories burnt while we exercise? An average person needs between 1500 (small woman) to 3000 (tall man) calories per day. The same average person running 30 minutes, (and how many people do you actually know who can run 30 minutes?), will burn about 250 to 450 calories. But a medium size blueberry muffin is about 425 calories. A large handful of walnuts has about 370 calories. Do you really think that running 30 minutes, even if you do it every day, is enough to significantly offset our daily calorie balance? It isn’t.

The effect of exercise on body composition is not directly but indirect. Exercise will both increase the sensitivity of the muscle cells to insulin, making them more efficient at using glucose. Exercise will also increase body temperature and metabolic rate, both of which will increase how much energy is used by our cells, for several hours following exercise. And the most effective kind of exercise in this respect is resistance training, or more plainly, weight lifting.

The most metabolically active tissue is muscle. The more muscle we have, the more energy is used, and the faster both glucose and fat are burned to supply fuel to the cells. The more we use our muscles, and the more intensely we use them, the more they grow, and the more efficiently they burn both glucose and fat. Also, the stronger the muscles, the stronger and denser the bones will be. This is very important.

Therefore, as we burn more fat, we burn fat more efficiently. As we use our muscles more intensely, we burn more fat. And as we build more and stronger muscle, we burn even more fat even more efficiently, and make the bones stronger.

Hence, the essential key to fat loss is low insulin. Exercise is not necessary, and the way it helps is not with the amount of calories it burns, but in the indirect effect on glucose usage, insulin sensitivity, and metabolic rate. And the most metabolically effective way to work muscles is with resistance training by lifting weights.

Read More

Fat Loss and Eating Less

On the one hand, there’s no way that the body is going to use fat reserves unless it has to. If you’re constantly eating and digesting, supplying the body with a continuous stream of nutrients, it will never need to use its own energy reserves stock piled in fat cells, which need to be kept in case of need when we run out of food for a while. On the other, when we eat less, the body burns less, because metabolism slows down to adjust to the income energy supply. It’s also true that when we eat more, we burn more as the metabolism speeds up.

The effect on the metabolic rate of the amount of food we eat is in fact very significant. There’s a landmark experiment that was designed to verify that in a perfectly controlled setting of a prison that Gary Taubes reports on in Good Calories, Bad Calories. What they did is have a group of inmates increase their food intake and monitor body composition. But they increase their food intake in a very specific way: they had them on a low carbohydrate diet, increasing only their protein and fat intake. What happened was quite stunning, for most observers: despite an important increase in total calorie intake, nobody gained body fat. Mostly, they just felt really full all the time.

Good Calories, Bad Calories was read by a lot of people, and triggered a huge wave of interest in carbohydrate restriction, both in the research community and in the general population. Because it is so unbelievable to most that you can eat so much and not gain any body fat, the experiment was repeated by several people in recent times. And although these are what we call anecdotal, because they aren’t controlled experiments, they are still very interesting to witness. Here’s one that triggered several others to try it. It was done by Jason Wittrock who doubled his calorie intake from 2000 to 4000 for 21 days in a row, keeping his daily exercise and work routines the same, and maintaining the same very-low carbohydrate keto-style macronutrient ratios. He didn’t gain any fat or even weight: https://www.youtube.com/watch?v=MRop_ltYUlk

The essential takeaway is this: fat gain is not really related to how much we eat. Rather, it has mostly to do with the hormonal effects of what we eat.

Read More

Why Bloodwork is so Critical

This means that absolutely everything in the body is defined and determined by its biochemistry, and that everything we eat, drink, and do, but also everything we think, feel, and believe, defines and determines the biochemistry of the body.

Bloodwork is the only way to take a look inside. It is also the only way to have quantitative measures of biomarkers that we can identify as being associated with specific aspects of our health, and do something about correcting imbalances. It is also a very useful way to monitor our health over time, especially if we are engaging in a health enhancing programme.

Is your fasting insulin above 5, is it above 15 IU/L? Are your triglycerides above 50, are they above 150 mg/dl? Is your vitamin D levels below 40 ng/ml, your vitamin B12 below 600 pg/ml? What about your homocysteine, is it above 6 umol/l, and your C-reactive protein, is it above 1 mg/dl? Or what about your thyroid markers, do you know what are your free T3, free T4, and TSH levels are?

There's a lot we can learn from bloodwork that we simply cannot know without taking this look inside the body. So, if you're serious about your health, you simply have to do regular bloodwork. That's all there is to it.

Read More

Fat Loss and Carbohydrate Tolerance

Within the cell, glucose can be either fermented without oxygen or oxidised with oxygen. Lower oxygen levels (and very high short term metabolic needs) promote fermentation. Higher oxygen levels (and lower metabolic ATP production rates) favour oxidation. More fermentation leads to greater accumulation of lactic acid, which further decreases oxygen levels. Red blood cells do not have mitochondria and therefore can only produce ATP by fermenting glucose.

Lower glucose leads to lower insulin. This triggers the release of fatty acids and glycogen into the bloodstream. If sustained, low glucose leads to the production in the liver of ketones primarily to fuel the brain whose cells can either use glucose, ketones, or medium chain fatty acids because longer molecules cannot pass the blood-brain barrier.

Everything we have described up to now about fat loss is universal in animals. But each animal is different, and each person is different. As far as fat loss is concerned, the individuality of people is related to their predispositions to insulin resistance and carbohydrate tolerance, (or actually, intolerance). Every person is differently intolerant to carbohydrates and differently predisposed to insulin resistance.

This is why in a group eating the same diet, there are people who are thin, people who are chubby, people who are obese, and everything in between. Basically, the greater the predisposition to insulin resistance (and the more sedentary), the lower the tolerance to carbohydrates will be, and the fatter you will tend to get. In contrast, the lower the predisposition to insulin resistance (and the more active), the higher the tolerance to carbohydrates, and the thinner you will tend to be.

This translates into different thresholds in the amount of carbohydrate we can eat without negative metabolic consequences, and therefore, the amount under which we must stay in order to burn fat instead of storing it. As a guideline, if you want to burn primarily fat as your body's basic fuel, this maximum amount per day would be around 20--25 grams if you are fat; around 30--50 gram if you are neither fat nor thin, and could be as much as 80--100 grams if you are very thin.

But no matter what your personal threshold happens to be, it will always be the case that the lower the intake of carbohydrates, the lower the glucose and insulin will be, and the more efficiently your body will burn fat as fuel.

Read More

Fat Loss and Eating Less Fat

As we saw in the previous post, fat gain and body composition do not have much to do with the amount we eat, but with what we eat. And in particular, it has mostly to do with the amount of carbohydrates.

And here’s the basic problem with eating less: we get hungry. The less we eat, the more hungry we get.

What’s worse though, if we eat less fat, we’ll feel even more hungry, and the more carbohydrates we will tend to eat. But the more carbohydrates we eat, the more hungry we’ll get. What a terrible situation.

It’s a vicious circle: we eat less in general, and we generally get more hungry. We eat less fat, we eat more carbohydrates. We eat more carbohydrates, and we get even more hungry.

No matter how hard you try, it’s pretty darn hard to imagine a worse way to try to lose body fat. Right?

What’s the solution then? It’s precisely the opposite: eat a lot less carbohydrates, eat more fat, get a lot less hungry, and therefore eat less naturally. Pretty simple and logical. But I realise it may be a little counterintuitive at first, and now you know.

Read More

Fat Loss

Every second that we are alive, trillions of biochemical reactions take place. The energy currency is adenosine triphosphate, ATP. Mitochondria produce ATP primarily using glucose or fatty acids. Fatty acids produce a lot more, but glucose is much easier to use. Both are used but one always dominates. In general, if there is glucose to be used, fatty acids are not. For fat loss, we want to promote fat burning for ATP production to fuel cellular activity.

How could losing body fat not have to do with eating less? Well, to be perfectly honest, it does and it doesn’t. It does in the sense that losing body fat actually means using up energy reserves stored in fat cells. And it doesn’t in the sense that eating significantly less will lower body temperature and slow down our metabolism in order to preserve these energy reserves so that we can survive longer.

Alright then. How could losing body fat not have to do with eating less fat? Here again, it does and it doesn’t. It does because the total amount of calories we eat does, in fact, have an effect on the speed at which we can lose or gain body fat. But it doesn’t because it’s not neither the amount of food or fat that we eat that determines how much body fat we can lose.

And what about exercise? It must be related in some way? I mean, there are no fat high level athletes, right? They’re all muscular and super lean. Of course. But here’s the thing: In exactly the same way as for the previous two points, exercising does and doesn’t have an effect on fat loss. It does in the sense that everything we do with our body and in particular how and how much we move does affect how it runs, how it uses energy, and how it burns fat. But it doesn’t in the sense that it’s not the burning of calories during exercise that makes a difference. It’s actually the metabolic effects of exercising that do.

Do you think I’m beating around the bush? I’m really not. What I’m trying to do is dispel the most common misunderstands about fat loss. Here’s what’s most important to understand:

Basically everything about fat loss has to do with insulin because insulin regulates fat storage and fat burning.

Read More

Fat Loss and the Rate of Fat Burning

Pushing this to the limit to get to the maximal usage of fat reserves, we would only provide the amount of protein needed to maintain muscle and other active tissues, but nothing more. In this situation, basically all energy needs would be supplied by stored fat reserves and glycogen when needed. This is greatly enhanced by resistance training.

The amount of protein needed is proportional to muscle mass and muscular activity. As a guideline, you can use 1--1.5 grams per kg of lean mass per day in the case of little physical activity, and 2--3 g/kg/d in the case of high muscular activity levels. Excessive protein is not great, but more is almost always better than less.

Fat burning and protein synthesis can be further optimised by intermittent fasting. Extending the time between feedings allows glucose and insulin to drop lower, which increases the rate of fat burning. And by eating fewer but larger amounts of protein in a meal is better because protein synthesis increases in proportion to the amount consumed.

Thyroid function regulates metabolism. Iodine is used in every cell, but in the thyroid, it is concentrated to more than 100 times the average of other tissues. That’s because iodine is the main structural component of thyroid hormones. Iodine supplementation is critical for the reason that most soils are highly depleted. It is water soluble and very safe to supplement with.

Read More